반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
하이브리드 클라우드 모니터링에 Zenius EMS가 필요한 4가지 이유
하이브리드 클라우드 모니터링에 Zenius EMS가 필요한 4가지 이유
오늘날 기업의 IT 인프라는 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스 환경)를 함께 사용하는 하이브리드 클라우드 구조로 빠르게 전환되고 있습니다. 이처럼 두 환경의 장점을 결합한 하이브리드 클라우드는 유연한 확장성과 높은 보안성을 동시에 확보할 수 있어, 다양한 산업 분야에서 널리 채택되고 있습니다. 하지만 하이브리드 클라우드 환경은 운영 가시성을 확보하고, 시스템 전반을 효율적으로 관리하는 부분 등에서 어려움이 있습니다. 특히 서로 다른 환경을 하나의 관점에서 통합적으로 모니터링하려면, 기존의 단일형 관제 시스템만으로는 분명한 한계가 존재합니다. Zenius EMS는 이러한 복잡성을 해결하기 위해 설계된 지능형 IT 인프라 통합 모니터링 솔루션입니다. 다양한 인프라를 하나의 프레임워크 안에서 통합 관리할 수 있도록 돕고, 자동화된 장애 대응 기능과 대규모 인프라 수용 능력을 함께 갖추고 있어, 복잡한 클라우드 운영 환경에서도 안정성과 효율성을 동시에 실현할 수 있습니다. 그렇다면 구체적으로 Zenius EMS가 하이브리드 클라우드 모니터링에 왜 필요한지 네 가지로 나눠서 살펴보겠습니다. Zenius EMS가 하이브리드 클라우드 모니터링에 필요한 네 가지 이유 1) 다양한 인프라를 하나의 화면에서 통합 관리 Zenius EMS는 각 인프라 유형에 최적화된 전용 모듈을 통해 인프라 상태와 성능을 체계적으로 수집하고 분석합니다. 예를 들어, CMS 모듈(Zenius CMS)은 클라우드 서비스별 리소스 상태, 사용 지표, 비용 초과 알림 등을 통합해 관리하며, K8s 모듈(Zenius K8s)은 클러스터 전체 구성요소의 상태, 리소스 사용률, 이벤트 발생 내역을 실시간으로 관제합니다. 또한 자동 생성되는 Topology Map을 통해 워크로드 간 연관 관계와 서비스 흐름을 시각적으로 표현할 수 있어, 클러스터 내부에서 발생하는 병목이나 장애 영향을 직관적으로 파악할 수 있습니다. APM 모듈(Zenius APM)은 웹 애플리케이션의 트랜잭션 처리량, 응답 지연, 사용자 행동 흐름 등을 실시간 분석하며, 동시에 WAS, DB, 외부 연계 시스템 등 전체 요청 경로 상의 성능 병목을 식별할 수 있습니다. NPM 모듈(Zenius NPM)은 커널 수준에서 수집한 네트워크 트래픽 데이터를 기반으로, 장비 단위가 아닌 프로세스 단위의 통신 현황을 분석하여 어떤 서비스가 어느 포트, 어느 서버와 언제 얼마나 통신했는지를 정확하게 추적할 수 있도록 돕습니다. 특히 Zenius EMS의 큰 강점은, 이러한 각기 다른 모듈들이 단순히 병렬적으로 구성되는 것이 아니라, 하나의 통합 관제 프레임워크 내에서 상호 연동되어 작동한다는 점입니다. 예를 들어, K8s 모듈과 APM 모듈을 연계하면, 클러스터 내 서비스의 성능 저하가 애플리케이션 차원에서 어떤 영향을 주는지를 교차 분석할 수 있으며, 그 결과를 기반으로 장애 발생 원인을 보다 정밀하게 추적할 수 있습니다. Zenius EMS는 단일 뷰 기반의 통합 화면 구성과 모듈 간 연계 분석 기능을 통해, 복잡한 하이브리드 인프라 환경에서도 인프라 상태를 실시간으로 가시화하고, 장애의 흐름과 구조를 맥락적으로 이해할 수 있도록 지원합니다. 2) 운영 자동화와 예측 분석으로 장애 대응 시간 최소화 하이브리드 클라우드 환경에서는 장애가 언제, 어디서, 어떤 형태로 발생할지 예측하기 어렵기 때문에, 수동적인 장애 대응 방식으로는 복잡한 인프라 환경을 안정적으로 운영하기 어렵습니다. Zenius EMS는 운영자의 개입을 최소화하면서도 정확하고 빠르게 대응할 수 있는 자동화된 장애 관리 체계를 내장하고 있습니다. 먼저, Agent가 각 인프라 노드나 애플리케이션에 설치되어 이벤트 발생을 실시간으로 감지하며, 감시정책에 따라 자동으로 알림을 전송하고, 장애의 심각도에 따라 최대 3단계까지 에스컬레이션 (escalation)되는 체계를 제공합니다. 복구가 완료되면, 시스템은 정상 상태로의 전환 여부를 다시 감지하고, 담당자에게 자동 통보함으로써 알림 누락이나 대응 지연을 최소화합니다. 또한 Zenius EMS는 장애 발생 당시의 인프라 상태를 Snapshot 형태로 저장하여 이후 원인 분석에 활용할 수 있습니다. 단순한 수치 기록을 넘어서 해당 시점의 구성요소 상태, 트래픽 흐름, 애플리케이션 반응 시간 등 실시간 운영 데이터 전체를 캡처할 수 있어 문제 발생의 맥락을 복원하는 데 용이합니다. 저장된 장애 이력은 Knowledge DB에 축적되며, 유사 장애 발생 시 자동으로 과거의 대응 이력을 불러와 선제적인 조치를 제안합니다. 이와 함께 Zenius EMS는 AI 알고리즘 기반의 성능 예측 기능도 지원합니다. 장기간 축적된 메트릭 데이터를 분석해 자원 사용률 급증, 트래픽 편중, 프로세스 과부하 같은 이상 징후를 사전에 감지하고, 장애로 이어지기 전 조치를 취할 수 있도록 도와줍니다. 이로써 Zenius EMS는 장애 탐지, 원인 분석, 대응, 재발 방지, 선제 대응까지 운영 전 과정을 자동화하고 지능화된 방식으로 처리할 수 있는 환경을 제공합니다. 3) 대규모 환경에서도 안정적으로 작동하는 구조 Zenius EMS는 복잡한 구성과 대규모 트래픽이 동시에 존재하는 엔터프라이즈급 인프라 환경에서도 안정성과 성능을 유지할 수 있는 구조적 기반을 갖추고 있습니다. 단일 Manager Set만으로도 최대 1,500대 이상의 서버를 동시에 관제할 수 있으며, SIEM 모듈 기준 초당 160만 건의 데이터 입력을 처리할 수 있는 고성능 분석 엔진을 보유하고 있습니다. 이는 TTA 인증을 통해 공식적으로 성능을 입증받은 결과입니다. Zenius EMS는 전체 시스템이 초경량 매니저 및 에이전트 구조로 설계되어 있어 낮은 리소스 점유율로도 높은 처리 효율을 유지할 수 있습니다. 모듈 간 데이터 전달 및 상호작용도 최소한의 네트워크 부하로 작동되도록 설계되어, 대용량 환경에서도 병목 없이 관제 품질을 유지합니다. 특히 확장된 환경에서는 모듈 추가만으로 수용량을 유연하게 늘릴 수 있어, 인프라 확장에 따른 별도의 구조 변경 없이 유연한 확장 대응이 가능해, 인프라 변화에 빠르게 적응할 수 있습니다. 또한 Zenius EMS는 국내외 주요 클라우드 서비스 제공업체(CSP)의 마켓플레이스 8곳에 등록되어 있어, 클라우드 환경에서도 간편하고 신속한 도입이 가능합니다. 이미 다양한 산업의 대규모 고객 환경에 적용되어 성능과 안정성을 입증했으며, 이를 통해 높은 기술적 신뢰성을 확보하고 있습니다. 4) 검증된 안정성과 지속적인 기술 지원 Zenius EMS는 기능적 완성도뿐 아니라, 현장 중심의 운영 안정성과 체계적인 기술 지원 역량을 함께 갖춘 IT 인프라 관제 솔루션입니다. 현재까지 공공, 금융, 의료, 제조 등 다양한 산업 분야에서 1,000여 개 이상의 고객사에 도입되어 실제 운영되고 있으며, 10년 이상 장기 사용 고객 비율이 34%를 넘어설 만큼 높은 충성도와 신뢰를 확보하고 있습니다. 구축 이후에도 Zenius EMS는 단순한 모니터링 시스템을 넘어, 지속 가능한 운영 경험을 제공합니다. 고객 전담 엔지니어가 상시 유지보수와 기술 지원을 전담하며, 운영 중 발생하는 이슈에 신속하고 일관된 대응이 가능하도록 ServiceDesk 체계가 마련되어 있습니다. 또한, 15년 이상의 현장 경험을 가진 전문 엔지니어 인력이 직접 대응하며, QA 전담 테스트팀은 신규 기능이나 환경 변경 시 사전 안정성 검증을 통해 서비스 품질을 철저히 관리합니다. 더불어, 정기적인 제품 고도화와 보안 패치가 지속적으로 이루어지고 있으며, 고객 환경의 변화에 따른 모듈 기능 확장이나 커스터마이징 요청에도 유연하게 대응하고 있습니다. 이러한 운영 지속성과 기술 지원 체계는 Zenius EMS의 큰 강점으로 꼽힙니다. 하이브리드 클라우드 환경은 단순히 퍼블릭과 프라이빗 인프라를 병행해 사용하는 차원을 넘어, 가상화, 컨테이너, 다양한 클라우드 리소스들이 유기적으로 얽혀 있는 복잡한 구조로 변화하고 있습니다. 이처럼 다양한 인프라가 서로 연결되어 있는 환경에서는 단일 장애가 전체 서비스에 어떤 영향을 주는지를 파악하는 일조차 쉽지 않으며, 과거의 이슈와 연관된 맥락까지 함께 분석할 수 있어야 보다 정확하고 신속한 운영이 가능해집니다. Zenius EMS는 단일 리소스 중심의 수치나 지표 제공에 머무르지 않고, 전체 인프라 구조를 맥락적으로 해석하고, 실시간 자동화 및 예측 분석 기능을 통해 장애를 사전에 방지하며, 발생한 이슈에 대해서도 구조적 흐름 안에서 진단할 수 있는 환경을 제공합니다. 여기에 더해, 대규모 인프라 환경에서도 안정적으로 동작할 수 있는 구조와 운영자의 부담을 줄여주는 기술 지원 체계, 그리고 수많은 현장 경험을 통해 검증된 운영 안정성까지 더해지면서, Zenius EMS는 단순한 모니터링 도구를 넘어 하이브리드 인프라 운영을 실질적으로 뒷받침하는 기반 플랫폼으로 자리 잡고 있습니다.
2025.06.12
다음 슬라이드 보기