반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
많은 기업과 기관은 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스)를 병행하는 하이브리드 클라우드 환경을 도입하고 있으며, 그 위에서 쿠버네티스(Kubernetes, K8s)를 활용해 수십 개의 마이크로서비스를 독립적으로 배포하고 확장하는 방식을 채택하고 있습니다. 이러한 구조는 높은 유연성과 확장성을 제공하지만, 동시에 운영 복잡성을 크게 증가시키는 특징이 있습니다. 이에 따라 다양한 모니터링 도구와 대시보드가 활용되고 있지만, 실제로 장애가 발생하면 원인을 파악하기까지 여전히 많은 시간이 소요됩니다. 데이터 자체는 충분히 수집되고 있으나, 사용자 요청에서 애플리케이션과 컨테이너, 네트워크, 클라우드 리소스에 이르는 흐름이 하나의 시간축으로 유기적으로 연결되지 않기 때문입니다. 결국 각 지표가 분절된 조각으로만 보이면서, 문제의 전반적인 맥락을 명확하게 파악하기 어렵게 됩니다. 따라서 이제 모니터링의 목적은 단순한 데이터 수집을 넘어야 합니다. 수집된 데이터를 유기적으로 연결된 관점에서 해석하고, 복잡한 분산 환경의 특성을 반영하며, 탐지 이후에는 신속하게 조치와 대응으로 이어질 수 있는 체계를 마련하는 것이 중요합니다. 그렇다면 하이브리드 클라우드와 쿠버네티스 환경에서 모니터링을 수행할 때, 구체적으로 어떤 부분을 반드시 고려해야 할까요? 지금부터 그 핵심 요소들을 차례로 살펴보겠습니다. 하이브리드 클라우드와 쿠버네티스 모니터링, 반드시 고려해야 할 4가지 1) End-to-End Observability로 장애 원인을 빠르게 찾을 수 있어야 한다 모니터링은 사용자 경험에서 시작해 애플리케이션, 컨테이너와 노드, 네트워크, 그리고 클라우드 리소스까지 하나의 흐름으로 이어져야 합니다. 예를 들어 사용자가 웹 애플리케이션에서 지연을 겪는다면, 해당 요청의 트레이스를 열어 어느 구간에서 지연이 발생했는지 확인하고, 같은 시각의 CPU·메모리·입출력(IO) 사용량과 데이터베이스나 메시지 큐 같은 클라우드 매니지드 서비스의 상태를 함께 살펴야 합니다. 이렇게 해야 단순히 “느리다”라는 현상에서 멈추는 것이 아니라, “어떤 서비스의 어떤 호출이 병목이며, 어떤 인프라 자원이 영향을 주었는가”라는 구체적 결론으로 이어질 수 있습니다. 이를 위해서는 데이터가 일관된 방식으로 연결되어야 합니다. 트레이스 식별자(Trace ID)와 서비스·환경 태그 같은 공통 메타데이터가 전체 수집 계층에 적용되어야 하며, 로그·메트릭·트레이스는 이 기준을 통해 즉시 상관 분석이 가능해야 합니다. 화면 구성도 마찬가지입니다. 서비스 개요에서 시작해 트랜잭션 세부, 컨테이너와 노드 지표, 네트워크와 클라우드 리소스로 자연스럽게 이어지는 드릴다운 구조가 마련되어야 운영자가 불필요하게 여러 화면을 오가며 시간을 낭비하지 않습니다. 또한 사용자 경험 지표를 백엔드 데이터와 연결하는 과정도 필요합니다. 실제 사용자 모니터링(RUM, Real User Monitoring) 기능 등을 통해 웹 성능의 핵심 지표를 함께 확인해야 합니다. LCP(Largest Contentful Paint·핵심 내용이 화면에 표시되기까지의 시간), INP(Interaction to Next Paint·사용자 입력에 대한 반응성), CLS(Cumulative Layout Shift·레이아웃 안정성)와 같은 지표를 백엔드 트레이스와 매칭하면, 지연의 원인이 서버 처리인지, 네트워크 왕복 시간인지, 외부 리소스 때문인지 명확히 설명할 수 있습니다. 2) 쿠버네티스 주요 이벤트를 실시간 성능 데이터와 함께 볼 수 있어야 한다 쿠버네티스는 끊임없이 변화하는 동적 분산 시스템입니다. Pod는 생성과 종료를 반복하고, 오토스케일러는 순간적인 부하에 따라 리플리카 수를 조정하며, 롤링 업데이트와 롤백은 하루에도 여러 번 발생합니다. 이런 특성 때문에 단순히 CPU와 메모리 사용률 같은 정적 지표만 확인해서는 문제를 제대로 이해하기 어렵습니다. 쿠버네티스 환경에서는 반드시 이벤트와 성능 지표를 같은 시간축에서 함께 해석해야 합니다. 예를 들어 특정 시점에 오류율이 급증했다면, 원인은 단순한 리소스 부족일 수도 있습니다. 그러나 API Server 지연이나 etcd 병목, 혹은 롤링 업데이트 과정에서 트래픽 전환이 매끄럽지 않아 발생한 문제일 가능성도 있습니다. 만약 Pod 재시작이나 CrashLoopBackOff 이벤트가 성능 저하와 같은 시점에 발생했다면, 이는 추측이 아니라 근거 있는 원인 분석으로 이어질 수 있습니다. 또한 서비스 간 통신에서 병목을 찾으려면 서비스 메쉬 지표나 eBPF 기반 네트워크 관측이 효과적입니다. 이들은 동서 트래픽의 RTT, 오류율, 지연 분포를 보여주어 호출 경로상의 문제 지점을 명확히 드러냅니다. 여기에 HPA 동작이나 롤백 시점을 성능 지표와 함께 기록하면, 배포가 실제 성능 저하의 원인이었는지도 빠르게 확인할 수 있습니다. 결국 쿠버네티스 모니터링은 지표와 이벤트를 분리해 보는 것이 아니라, 하나의 시간선에서 연결해 해석해야 합니다. 그래야 단순히 “문제가 있다”라는 수준에 머무르지 않고, “이 시점, 이 이벤트, 이 서비스가 원인이다”라는 실행 가능한 결론으로 이어질 수 있습니다. 3) 클라우드 계정·리전·비용·보안을 하나의 기준으로 관리할 수 있어야 한다 하이브리드 클라우드는 유연성을 제공하지만, 동시에 운영 복잡성과 관리 부담을 크게 높입니다. 사업자마다 지표 체계와 콘솔이 다르고, 계정과 리전이 분산되면 운영자는 조각난 정보를 이어 붙이는 데 많은 시간을 소모하게 됩니다. 이러한 문제를 줄이려면 반드시 메타데이터 규칙을 정의하고 이를 일관되게 적용해야 합니다. 클라우드 계정과 리전 인벤토리는 자동으로 동기화되어야 하며, 모든 리소스에는 팀·서비스·환경 정보가 태그로 부여되어야 합니다. 비용, 성능, 가용성 지표는 이 태그를 기준으로 정렬·비교되어야 하며, 이를 통해 특정 서비스나 팀 단위의 문제를 빠르게 좁혀갈 수 있습니다. 비용 관리 또한 단순히 총액 확인을 넘어 예산·예측·이상 비용 감지까지 하나의 화면에서 제공되어야 실제 운영과 의사결정에 도움이 됩니다. 보안 역시 운영과 별도로 다루지 않고 같은 시각에서 관리해야 합니다. 퍼블릭 버킷 노출, 과도한 보안그룹 개방, 장기간 미사용 액세스 키와 같은 항목은 운영 대시보드에 함께 표시되어야 하며, 이를 통해 비용·성능·보안을 종합적으로 고려한 균형 잡힌 결정을 내릴 수 있습니다. 또한 재해복구 관점에서는 리전 간 지표 정합성과 복구 목표치(RTO, Recovery Time Objective·복구 시간 목표 / RPO, Recovery Point Objective·복구 시점 목표) 달성 여부를 주기적으로 점검해야 합니다. 이러한 데이터가 체계적으로 관리될 때 실제 장애 상황에서도 신속하게 대응할 수 있습니다. 결국 하이브리드 클라우드 모니터링은 각 사업자의 시스템을 따로따로 보는 것이 아니라, 하나의 기준과 규칙으로 통합 관리해야만 진정한 효과를 발휘합니다. 4) 운영 자동화와 알림 체계가 효과적으로 갖춰져 있어야 한다 모니터링의 목적은 데이터를 보여주는 것이 아니라 문제를 신속히 해결하는 데 있습니다. 따라서 알림 체계는 단순히 많은 경고를 쏟아내는 것이 아니라, 운영자가 즉시 판단하고 대응할 수 있을 만큼 충분한 정보를 담아야 합니다. 정적 임계치만으로는 환경 변화를 따라가기 어렵습니다. 시스템은 정상 상태를 스스로 학습해 기준선을 조정할 수 있어야 하며, 유사한 성격의 이벤트는 상관관계 분석을 통해 하나의 사건으로 묶여야 합니다. 이렇게 해야 알림 소음을 줄이고, 운영자가 진짜 중요한 신호에 집중할 수 있습니다. 알림은 단순한 메시지가 아니라 증거를 함께 제공해야 합니다. 예를 들어 “CPU 사용률 초과”라는 경고만으로는 부족합니다. 같은 시점의 로그, 트레이스 링크, 최근 배포 이력, 리소스 스냅샷 등이 함께 제시되어야 운영자가 알림에서 곧바로 확인과 조치로 이어질 수 있습니다. 전달 방식 또한 중요합니다. 메신저 알림이나 모바일 푸시처럼 실제 대응이 이루어지는 채널을 사용해야 하며, 에스컬레이션은 시간과 역할에 따라 명확히 정의되어야 합니다. 교대 근무 체계와 연동된 프로세스까지 갖춰져야 운영 공백을 최소화할 수 있습니다. 궁극적으로는 탐지 → 증거 수집 → 조치 → 복구 확인까지 이어지는 과정이 표준 절차로 자리 잡아야 합니다. 사건 종료 후에는 포스트모템이 자동 기록되어 재발 방지로 이어져야 하며, 이러한 체계가 반복될수록 평균 대응 시간(MTTA)과 평균 복구 시간(MTTR)은 꾸준히 단축됩니다. 운영 자동화와 알림 체계가 제대로 작동할 때, 모니터링은 단순한 관찰을 넘어 실질적인 운영 성과로 연결됩니다. 클라우드와 쿠버네티스 환경은 앞으로도 더 확장되고 다양해질 것입니다. 서비스는 더 많은 리전에 걸쳐 배포되고, 애플리케이션은 더 많은 마이크로서비스로 쪼개지며, 운영자는 더 많은 데이터와 알림에 둘러싸이게 될 것입니다. 이 상황에서 단편적인 모니터링만으로는 대응 속도와 품질을 보장할 수 없습니다. 지금 필요한 것은 데이터를 연결된 시각으로 읽어내고, 이벤트와 지표를 하나의 시간선에서 해석하며, 클라우드 리소스를 일관된 규칙으로 관리하고, 알림을 실제 조치로 이어주는 운영 체계입니다. 이 네 가지는 기술적으로는 별개의 영역처럼 보이지만, 실제 운영에서는 긴밀히 맞물려 작동해야만 효과가 있습니다. 결국 모니터링의 목표는 단순히 상태를 보여주는 것이 아니라, 문제 해결과 서비스 안정성을 보장하는 데 있습니다. 하이브리드 클라우드와 쿠버네티스 환경에서 이 네 가지 관점을 충실히 반영한다면, 복잡성을 줄이고, 장애 대응 시간을 단축하며, 미래의 확장성까지 확보할 수 있습니다.
2025.09.25
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
오늘날 기업의 IT 인프라는 클라우드, 가상화, 마이크로서비스(Kubernetes)로 빠르게 전환되고 있습니다. 서비스는 점점 더 세분화되고 연결 구조는 복잡해지면서, 단일 지점에서 발생한 문제라도 전체 서비스 품질에 즉각적인 영향을 미칠 수 있습니다. 그러나 기존의 네트워크 모니터링 방식은 주로 장비 단위에 국한되어 있어, 트래픽 증가나 지연 같은 현상이 발생했을 때 원인을 신속하고 정확하게 파악하기가 쉽지 않습니다. 이러한 환경에서는 단순한 장비 레벨 모니터링을 넘어, 인터페이스 → 트래픽 흐름 → 프로세스 단위까지 네트워크를 다각도로 관찰하는 체계가 필요합니다. Zenius의 NMS, TMS, NPM은 각각의 레벨에서 데이터를 수집·분석함으로써, 네트워크 전반을 단계적으로 추적하고 문제 지점을 빠르게 규명할 수 있도록 돕습니다. 이번 글에서는 세 가지 솔루션을 연계하여 실제 운영 환경에서 어떻게 트래픽 원인을 분석할 수 있는지를 구체적으로 살펴보겠습니다. Zenius NMS·TMS·NPM: 각 솔루션의 특징과 차이점 Zenius NMS, TMS, NPM의 정의와 역할을 먼저 정리해보겠습니다. 각각의 솔루션은 모두 네트워크 트래픽을 모니터링하고 분석하는 기능을 제공하지만, 적용되는 관점과 수집 방식, 그리고 활용 목적에서 분명한 차이가 있습니다. Zenius NMS(Network Management System)는 SNMP를 기반으로 라우터, 스위치 등 네트워크 장비의 물리 인터페이스 관점에서 트래픽을 모니터링합니다. 이를 통해 장비별 포트 사용량, bps/pps, 에러 발생 여부 등을 실시간으로 확인할 수 있으며, 네트워크 전반의 기본적인 상태를 빠르게 파악하는 데 유용합니다. 반면 Zenius TMS(Traffic Management System)는 NetFlow, sFlow, IPFIX와 같은 Flow 데이터를 활용하여, 네트워크를 경유하는 IP·Port 단위 트래픽 흐름을 분석합니다. 스위치를 경유하는 트래픽에 대해 bps/pps와 같은 기본 지표를 확인할 수 있을 뿐 아니라, 애플리케이션별·서비스별·포트별로 트래픽을 분류하고 TopN 분석을 제공하기 때문에, 백본이나 라우터 구간에서 어떤 서비스가 대역폭을 가장 많이 사용하는지 직관적으로 파악할 수 있습니다. 마지막으로 Zenius NPM(Network Performance Monitoring)은 eBPF 기술을 기반으로 서버 및 컨테이너 환경의 커널 레벨 통신을 모니터링합니다. 단순 트래픽량뿐만 아니라 Latency, RTT, Jitter, Retransmit 등 정밀한 성능 지표까지 수집할 수 있어, Kubernetes나 MSA 기반 서비스처럼 복잡한 구조에서 세밀한 원인 분석이 가능합니다. 정리하자면, NMS는 장비·인터페이스 레벨, TMS는 네트워크 경로·서비스 레벨, NPM은 서버·프로세스 레벨에서 각각 네트워크를 해석합니다. 이 세 가지를 유기적으로 결합하면, 물리적 인터페이스 → 네트워크 경로 → 커널 기반 통신까지 다층적으로 추적할 수 있어, 복잡한 네트워크 환경에서 발생하는 트래픽 문제를 효과적으로 해결할 수 있습니다. 이제 각 솔루션이 실제로 어떻게 연계되어 활용되는지, 구체적인 기능 구성 및 분석 절차를 하나씩 살펴보겠습니다. NMS·TMS·NPM 기반 트래픽 분석 기능 구성 및 확인 절차 본격적으로 NMS·TMS·NPM 기반 트래픽 분석 절차를 살펴보겠습니다. 이번 사례는 쿠버네티스(K8s) 기반 WAS 서비스의 트래픽 흐름을 추적하며, 각 구간을 어떤 방식으로 점검할 수 있는지를 단계별로 살펴보겠습니다. [Step 1] 운영환경과 트래픽 흐름 구간 확인 먼저 운영환경의 기본 구성도를 확인하고 분석 대상이 되는 구간을 정리합니다. 본 사례에서는 DB POD → WAS POD → Worker Node → 내부 L3 → 백본 → 방화벽으로 이어지는 흐름을 점검 대상으로 삼습니다. 이러한 흐름을 명확히 정의해두면 이후 어떤 도구와 지표를 중점적으로 확인해야 할지 쉽게 구분할 수 있습니다. [Step 2] 구간별 모니터링 체계 구성 다음으로 각 구간을 어떤 방식으로 수용하고 분석할지 체계를 구성합니다. - 내부 L3, 백본, 방화벽은 SNMP를 통해 NMS에 연계하여 인터페이스 단위 트래픽을 수집합니다. - 백본은 NetFlow, sFlow 등의 Flow 데이터를 TMS에 수용해 애플리케이션 및 서비스 흐름을 분석합니다. - Worker Node는 Agent 기반으로 NPM에 연결해 POD 간 세밀한 통신 현황을 추적합니다. 이렇게 구성하면 서버, 네트워크 장비, 서비스 경로까지 계층별로 입체적인 모니터링이 가능합니다. [Step 3] 구간별 상세 분석 ① POD ↔ WAS POD DB POD와 WAS POD 사이의 통신은 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색] 경로를 통해 확인합니다. 여기서 IP와 Port를 기준으로 필터링하면, 해당 세션의 트래픽량뿐 아니라 Latency, RTT, Jitter, Retransmit 같은 세밀한 성능 지표를 함께 살펴볼 수 있습니다. 또한, [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색] 메뉴를 이용하면 DB POD Port를 기준으로 실제 트래픽 흐름이 어떻게 연결되는지를 시각적으로 파악할 수 있습니다. ② WAS POD ↔ Worker Node ↔ 내부 L3 그다음에는 [NPM > 모니터링 > 트래픽현황] 화면에서 Worker Node 전체 기준으로 트래픽을 점검합니다. 이 과정에서는 상위 트래픽 발생 호스트, 송수신 바이트, Latency, Jitter 추이를 시간대별로 확인할 수 있어, 특정 시점에서 발생한 지연 현상을 이벤트와 연관 지어 분석하기에 적합합니다. ③ Worker Node ↔ 내부 L3 내부 L3 구간은 [NMS > 모니터링 > 장비 > 인터페이스] 메뉴에서 확인합니다. bps, pps, 에러 발생 여부 같은 항목을 중심으로 살펴보면 링크의 안정성과 과부하 여부를 빠르게 점검할 수 있습니다. 또한, [NMS > 모니터링 > 성능 > 인터페이스] 메뉴를 활용하면 시간대별 bps/pps 그래프를 통해 트래픽 패턴 변화를 확인할 수 있으며, 이는 NPM에서 관측한 Latency나 Jitter 지표와 교차 검증하는 데 도움이 됩니다. ④ 내부 L3 ↔ 백본 ↔ 방화벽 마지막으로 백본 구간은 TMS를 통해 흐름을 분석합니다. [TMS > TopN > 어플리케이션] 메뉴에서 HTTPS, PostgreSQL 등 주요 애플리케이션별 트래픽 분포를 확인할 수 있으며, [TMS > TopN > 트래픽, Port] 화면에서는 IP와 Port를 기준으로 어떤 서비스가 대역폭을 점유하고 있는지 빠르게 파악할 수 있습니다. [ TMS > TopN > 트래픽, Port ] IP, Port 등 다양한 기준의 백본 경유 트래픽 분석 결국, NPM은 POD·서버 간 세밀한 지연과 통신 성능을, NMS는 네트워크 장비 인터페이스 단위 안정성을, TMS는 서비스 및 애플리케이션 흐름을 각각 보여줍니다. 이렇게 다층적인 분석을 통해, 단일 구간이 아닌 전체 서비스 경로를 종합적으로 추적할 수 있으며, 이는 재현이 어려운 네트워크 장애 원인 파악에 큰 도움이 됩니다. 활용 예시 “특정 Worker Node 트래픽 급증” 원인 추적하기 쿠버네티스(K8s) 환경의 서비스는 일반적으로 다수의 POD가 상호 연결되어 하나의 서비스를 제공합니다. 이러한 구조에서는 특정 Worker Node의 트래픽이 급격히 증가했을 때, 기존의 일반 모니터링 도구(SMS) 만으로는 증가 원인을 정확히 분석하기 어렵습니다. SMS는 대개 NIC 단위 트래픽 수준까지만 보여주기 때문입니다. 따라서 Zenius NPM을 활용해 OS(커널) 관점에서 IP·Port 기준의 세밀 분석을 수행해야만, 어떤 POD·세션·포트가 원인인지 구체적으로 밝혀낼 수 있습니다. 1) NPM으로 포트/세션 단서 포착 먼저 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색]에서 문제의 Worker Node를 기준으로 플로우 목록을 정렬합니다. 다수의 POD에서 동일 포트(예: 8081) 로 통신하는 패턴이 확인되면, 수집 트래픽 증가 가능성이 높습니다. → 8081은 Zenius APM 데이터 수집 포트이므로, APM 수집량 증가에 따른 네트워크 사용량 상승을 1차 가설로 설정합니다. 2) NPM 트래픽 맵으로 대상·방향 확정 다음으로 [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색]에서 RemotePort = 8081로 필터링합니다. 트래픽 맵을 통해 어떤 POD들이 8081 수집 지점으로 트래픽을 보내는지와 연결 방향을 직관적으로 확인할 수 있습니다. 본 사례에서는 4개의 POD에서 동일 포트로 집중되는 흐름이 나타났고, 추가 8081 통신 대상은 확인되지 않았습니다. 3) K8s에서 트래픽 발생 POD 상태 교차 검증 이제 [Zenius K8s > 모니터링 > 파드]에서 트래픽 발생 POD(예: 192.168.0.216) 를 선택해 상태와 자원 사용률(CPU/메모리), 네트워크(bps) 를 확인합니다. 본 사례에서는 상태가 정상이고 Limit 대비 사용률도 안정적이어서, 트래픽 증가는 장애가 아닌 정상적인 수집 과정에서 발생한 현상으로 판단할 수 있습니다. 4) APM 지표로 맥락 검증 마지막으로 [Zenius APM > 모니터링] 대시보드에서 요청 건수, 응답 시간, 동시 사용자 등의 애플리케이션 지표를 확인합니다. NPM에서 포착된 8081 증가 시점과 APM 지표가 동조하면, 네트워크 증가는 APM 수집 트래픽 증가(정상 동작)로 판단할 수 있습니다. 반대로 APM 지표가 평온한데 8081만 치솟는다면, 이는 수집 설정이나 라우팅 구성의 이상을 의심해야 합니다. 이 경우, 동일 조건을 재현해 문제를 다시 발생시켜 보고, 원인이 확인되면 수집 주기·라우팅·리소스 할당 등을 조정(튜닝)하여 최적화할 수 있습니다. NPM–NMS–TMS–K8s–APM을 유기적으로 연결해, 특정 Worker Node 트래픽 급증 이슈를 포트/세션 단서 포착 → 흐름 확인 → POD 상태 교차 검증 → 애플리케이션 지표로 맥락 확인의 순서로 좁혀가는 방법을 살펴봤습니다. 핵심은 커널 레벨의 정밀 지표(NPM)로 원인을 가설화하고, 맵/인터페이스/서비스 흐름을 통해 이를 빠르게 검증하는 것입니다. 이 흐름을 표준 운영 절차로 적용하면, 재현이 어려운 상황에서도 원인 구간의 신속한 특정과 실질적인 조치(설정·라우팅·리소스 튜닝)도 가능합니다. 이번 글에서는 Zenius NMS·TMS·NPM을 통해 네트워크 트래픽을 다층적으로 분석하는 방법을 살펴보았습니다. 각 솔루션이 담당하는 관점과 역할은 다르지만, 함께 연계해 활용하면 장애 원인을 더 빠르고 정확하게 파악할 수 있습니다. 복잡해지는 인프라 환경에서 이런 분석 체계를 마련해 두는 것이 안정적인 서비스 운영의 핵심입니다.
2025.09.23
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
기술이야기
eBPF로 구현하는 TCP 상태 추적 기반 네트워크 모니터링
예전에는 네트워크 성능을 모니터링할 때 tcpdump로 패킷을 캡처하거나, netstat으로 연결 상태를 확인하거나, NetFlow/sFlow 기반 분석을 많이 사용했습니다. 하지만 네트워크 환경이 복잡해지고 암호화 트래픽이 늘어나면서, 그리고 컨테이너·MSA 환경으로 서비스가 쪼개지면서 기존 방식의 패킷 기반 모니터링은 점점 한계를 드러냈습니다. 성능 부하는 커지고, 세부 가시성은 부족했습니다. 이 문제를 해결해 준 게 바로 eBPF(extended Berkeley Packet Filter)입니다. eBPF는 커널 내부 함수에 직접 훅(Hook)을 걸어서 데이터를 가져올 수 있기 때문에, 서비스에 큰 영향을 주지 않고도 운영 환경에서 실시간 성능 분석이 가능합니다. 쉽게 말해, 예전에는 netstat으로 “포트가 지금 어떤 상태인지”만 볼 수 있었다면, eBPF를 쓰면 “그 포트의 상태가 어떻게 변하고 있는지”까지 관찰할 수 있습니다. 그래서 최근 클라우드 네이티브 환경이나 초저지연 서비스 운영에서는 eBPF가 차세대 네트워크 모니터링 기술로 주목받고 있습니다. eBPF란? eBPF는 커널 안에서 안전하게 실행되는 작은 프로그램으로, 네트워크·시스템 동작을 실시간으로 추적하는 데 강점을 가집니다. 네트워크 모니터링 관점에서 자주 쓰이는 기능은 다음과 같습니다. • kprobe/kretprobe: 커널 함수 진입·종료 시점 후킹 • tracepoint: 커널 이벤트 발생 시점 후킹 • BPF Map: 커널과 사용자 공간 간 데이터 공유 • BPF Helper 함수: 커널 리소스 접근 API eBPF는 Verifier(검증기)가 프로그램의 안전성을 보장하지 못하면 로드를 거부합니다. 과거에는 Verifier가 루프의 종료를 판별하지 못해 루프 사용이 전혀 허용되지 않았지만, 최근에는 단순 반복문은 사용할 수 있게 되었습니다. 또한 BTF(BPF Type Format)와 CO-RE(Compile Once – Run Everywhere) 기술 덕분에, 커널 버전이 달라져도 동일한 eBPF 프로그램을 별도 빌드 과정 없이 그대로 운용할 수 있습니다. eBPF 사용 방법 제가 공부하면서 가장 흥미로웠던 예제는 BCC 툴셋에 포함된 **tcpstates**입니다. TCP 연결 상태 변화를 추적하는 예제인데, 구조를 간단히 정리하면 다음과 같습니다. • bpf.c: 커널에서 실행되는 함수 중 “어떤 걸 관찰할지”와 “관찰 시 어떤 데이터를 수집할지” 정의 • .h: 커널과 유저 공간이 공유하는 데이터 구조체 정의 • .c: 수집된 데이터를 가공해서 사용자에게 출력 예를 들어, tcpstates.bpf.c에서는 커널 tracepoint inet_sock_set_state를 후킹해서 TCP 상태 변화를 잡아냅니다. 아래 코드를 보면 이해가 쉬우실 겁니다. int handle_set_state(struct trace_event_raw_inet_sock_set_state *ctx) { struct sock *sk = (struct sock *)ctx->skaddr; __u16 family = ctx->family; __u16 sport = ctx->sport; __u16 dport = ctx->dport; __u64 *tsp, delta_us, ts; struct tcpstates_t tcpstates = {}; if (ctx->protocol != IPPROTO_TCP) return 0; ts = bpf_ktime_get_ns(); tcpstates.skaddr = (__u64)sk; tcpstates.ts_us = ts / 1000; tcpstates.pid = bpf_get_current_pid_tgid() >> 32; tcpstates.oldstate = ctx->oldstate; tcpstates.newstate = ctx->newstate; tcpstates.family = family; tcpstates.sport = sport; tcpstates.dport = dport; bpf_get_current_comm(&tcpstates.task, sizeof(tcpstates.task)); if (family == AF_INET) { bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_rcv_saddr); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_daddr); } else { /* family == AF_INET6 */ bpf_probe_read_kernel(&tcpstates.saddr, sizeof(tcpstates.saddr), &sk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&tcpstates.daddr, sizeof(tcpstates.daddr), &sk->__sk_common.skc_v6_daddr.in6_u.u6_addr32); } // 상태가 변경되면 유저 공간에 알리는 부분 bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, &tcpstates, sizeof(tcpstates)); return 0; } 핵심 로직은 단순합니다. 커널에서 inet_sock_set_state가 호출되면 handle_set_state 함수가 실행되고, 이때 변경된 TCP 상태를 잡아내 사용자 공간으로 전달합니다. 언뜻 보면 복잡해 보일 수 있지만, 사실 bpf.c의 역할은 데이터를 가공하는 것이 아니라 수집하는 것입니다. 결국 중요한 것은 “내가 원하는 값이 구조체의 어디에 들어 있는지”를 정확히 찾아내는 일입니다. 그 값을 Map에 담아 사용자 공간으로 넘기면 됩니다. netstat으로 보이는 출력은 아래와 같죠. Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp 0 0 192.168.0.10:22 192.168.0.55:54321 ESTABLISHED 2048/sshd: user@pts/0 netstat은 사용자가 명령어를 실행한 시점의 상태만 스냅샷 형태로 보여줍니다. 그래서 LISTEN, ESTABLISHED, CLOSE_WAIT처럼 비교적 오래 유지되는 상태만 주로 확인할 수 있습니다. 반면 tcpstates를 활용하면 커널 내부에서 발생하는 모든 TCP 상태 변화를 이벤트 단위로 추적할 수 있습니다. 덕분에 기존 툴로는 관찰하기 어려웠던 3-way handshake와 4-way handshake 과정까지 실제로 확인할 수 있다는 점이 흥미로웠습니다. 조금 더 실무적으로 활용하자면, CLOSE_WAIT이 비정상적으로 쌓이는 경우 커넥션 누수를 빠르게 탐지할 수 있고, TIME_WAIT이나 FIN_WAIT2 패턴을 분석하면 리소스 사용량 문제를 조기에 파악할 수 있습니다. 관측용 예제지만, 확장하면 운영 환경에서도 충분히 유용한 진단 도구가 될 수 있습니다 다음으로 유저 공간의 tcpstates.c는 커널 eBPF 프로그램이 보낸 이벤트를 받아서 보기 좋게 출력하는 역할을 합니다. 흐름은 단순합니다. ①eBPF 오브젝트 열기 (tcpstates_bpf__open()) ②프로그램 커널 로드 (tcpstates_bpf__load()) ③훅 부착 (tcpstates_bpf__attach()) ④필요 시 cgroup 필터 등록 (open(), bpf_map_update_elem()) ⑤주기적으로 Map을 읽거나 이벤트를 받아 상태 출력 현재는 TCP 상태 변경 이벤트가 발생할 때마다 화면에 출력하는 방식으로 동작하지만, 필요하다면 일정 주기마다 netstat을 호출하듯이 현재 상태를 스냅샷 형태로 출력하도록 구현할 수도 있습니다. 마무리하며 이처럼 간단한 코드만으로도 tcpdump나 netstat보다 훨씬 세밀하게 네트워크 흐름을 분석하는 프로그램을 만들 수 있습니다. tcpstates 같은 예제는 단순하지만, eBPF의 장점을 잘 보여줍니다. • 저부하 eBPF는 패킷 전체를 캡처하지 않고, 연결 상태나 세션 정보 같은 핵심 메타데이터만 선택적으로 수집합니다. 이로 인해 CPU와 메모리 사용 부담이 최소화되며, 운영 중인 서비스에 성능 저하를 거의 일으키지 않습니다. 즉, 실서비스 환경에서도 안정적으로 적용 가능한 경량 모니터링 방식입니다. • 높은 가시성 단순히 IP와 포트 수준의 정보만 보여주는 데 그치지 않고, 프로세스명·PID·서비스 단위까지 트래픽을 구분할 수 있습니다. 이를 통해 “어떤 서비스가 얼마만큼의 네트워크 자원을 소비하는지”를 즉시 파악할 수 있으며, 서비스별 자원 사용 현황을 보다 세밀하게 모니터링할 수 있습니다. • 확장성 기본적인 송·수신량 분석을 넘어, RTT(왕복 지연시간), 재전송률, 패킷 드롭률 등 다양한 지표를 손쉽게 확장할 수 있습니다. 필요한 메트릭을 커널 훅(Hook)에 연결해 Map에 저장하기만 하면, 곧바로 시각화와 분석에 활용할 수 있습니다. 이 덕분에 환경 변화나 분석 요구에도 유연하게 대응 가능한 구조를 제공합니다. 브레인즈컴퍼니 역시 이 기술을 Zenius NPM(Network Performance Monitoring)에 적용하면서 기존 방식으로는 확인하기 어려웠던 세밀한 성능 데이터를 확보할 수 있었습니다. 이를 통해 단순한 모니터링을 넘어 서비스 간 통신 병목을 실시간으로 파악하고, 장애 분석 시간을 크게 줄일 수 있는 솔루션을 완성할 수 있었던 점이 큰 성과였습니다. 앞으로도 이러한 경험을 바탕으로 eBPF 활용을 더 넓혀가고자 합니다.
2025.09.18
기술이야기
For power plant operation big data collecton and storage solution
기술이야기
For power plant operation big data collecton and storage solution
Today, corporations are facing increasingly complex management environments as IT infrastructure continues to grow and evolve. In response, the need for an integrated management system that ensures both scalability and flexibility has become essential. Zenius-SMS enhances operational efficiency by providing integrated management of distributed servers, rapid fault handling, and comprehensive analysis and reporting. Zenius-NMS supports geographically distributed network systems with optimal status maintenance and efficient management through real-time monitoring, failure management, and in-depth reporting. The datasheets for Zenius EMS, SMS, and NMS — advanced IT infrastructure management solutions tailored for power plants — are available below. Zenius EMS datasheet Zenius SMS datasheet Zenius NMS datasheet
2025.09.18
기술이야기
AWS Opensearch(오픈서치) Alerting plugin 활용 방법
기술이야기
AWS Opensearch(오픈서치) Alerting plugin 활용 방법
AWS OpenSearch(오픈서치)는 핵심 기능을 확장하기 위해 다양한 Plugin을 제공합니다. 이를 통해 운영 환경에 맞게 안정적이고 효율적인 기능을 추가할 수 있습니다. 그중에서도 Alerting Plugin 은 조건 기반 탐지와 알림 기능을 제공하며, 보안 모니터링이나 장애 대응 같은 영역에서 자주 활용됩니다. 특정 이벤트를 실시간으로 감시하고, 정의한 조건을 만족할 경우 자동으로 알림을 발생시켜 운영자의 대응 속도를 높일 수 있습니다. 이번 글을 통해서 Alerting Plugin의 주요 구성 요소와, 실제 적용 과정에서 고려해야 할 부분을 함께 살펴보겠습니다. 1. Alerting plugin이란? 보안기능의 기본은 특정 조건에 대한 탐지설정을 하고 설정한 탐지 조건에 만족하는 데이터를 찾게 되면 원하는 형태로 알림을 발생시키는 것입니다. Alerting 은 Opensearch 내에 데이터를 탐지 대상으로 하여 기본 탐지 기능을 안정적으로 제공하는 plugin 입니다. Opensearch 문서에서는 대략적으로 아래 키워드로 설명 하고 있습니다. - Monitor: 검색조건에 해당하는 쿼리를 작성하고, 실행주기를 설정합니다. 여기에서 정의된 쿼리의 실행 결과는 Trigger 의 입력 데이터로 사용됩니다. - Trigger: 입력되는 쿼리 결과를 기준으로 실제 행위를 발생시키는 조건을 정의합니다. - Alert: Trigger 에서 정의된 조건이 만족하는 경우 Alert 이라는 이벤트를 생성합니다. - Action: Alert 이 발생했을 때 수정행 할 작업을 정의합니다. - Notification: Alert 이 발생했을 때 전송되는 알림 메시지를 정의합니다. 2. 어떤 버전을 사용하면 될까? Alerting 기능은 Opensearch 1.1.0 버전부터 제공된다고 되어 있지만, 알림(Notification) 기능이 추가되는 2.0 이후 버전부터 활용성이 높아졌다고 생각되네요. 개발의 편의성이나 시각적인 결과를 원한다면 OpenSearch Dashboards에 도입되는 2.9 버전 부터가 OpenSearch Dashboards 에 도입되기 때문에 시각적인 결과확인이 가능하여 개발이나 테스트 시에 도움이 많이 될 수 있습니다. Openserach 가 설치되어 있다면 다음 방법으로 plugin 상태를 확인해 볼 수 있는데요. curl -X GET http://localhost:9200/_plugins/_alerting 결과 opensearch-alerting 2.16.0.0 opensearch-notifications 2.16.0.0 opensearch-notifications-core 2.16.0.0 실제 사용해봤던 버전은 2.10, 2.16 으로 기능상으로 큰 차이는 없었기에 적당한 버전을 선택하여 사용하면 될 것 같네요. 아래는 openserach-dashboard 명령어로 설치된 plugin 리스트를 확인한 결과입니다. ./opensearch-dashboards-plugin list --allow-root alertingDashboards@2.16.0.0 anomalyDetectionDashboards@2.16.0.0 assistantDashboards@2.16.0.0 customImportMapDashboards@2.16.0.0 ganttChartDashboards@2.16.0.0 indexManagementDashboards@2.16.0.0 mlCommonsDashboards@2.16.0.0 notificationsDashboards@2.16.0.0 observabilityDashboards@2.16.0.0 queryWorkbenchDashboards@2.16.0.0 reportsDashboards@2.16.0.0 searchRelevanceDashboards@2.16.0.0 securityAnalyticsDashboards@2.16.0.0 securityDashboards@2.16.0.0 아래는 Opensearch Dashboard 에서 설치된 plugin 을 메뉴로 확인상태 입니다. 이처럼 필요한 플러그인을 적절한 버전으로 설치했다면, 이제 Alerting의 핵심 기능인 Monitor 와 Trigger 설정 방법을 살펴보겠습니다. 3. Monitor 실제로 탐지를 수행하고 alert을 발생시키기 위한 trigger의 입력 값이 되는 검색조건과 실행 주기를 설정하는 부분입니다. Monitor 는 Alerting 의 출발점이자 이후 Trigger, Alert, Action 으로 이어지는 전체 탐지 프로세스의 기반이 되는 구성 요소입니다. 아래와 같이 몇 가지 검색조건을 구분하는 기능을 제공하는데, Per Query Monitor, Per Bucket Monitor에 대해서 먼저 알아보겠습니다. - Per Query Monitor 설정한 쿼리 결과의 개수를 그대로 Trigger 조건의 입력 값으로 사용하도록 처리하는 방식이기 때문에 기본적이면서 단순 조건을 처리할 때 주로 사용하는 방식입니다. 예를 들어 시스템 로그를 대상으로 특정 사용자에 대한 로그인 실패 이력을 조건으로 건다고 했을때 아래와 같은 쿼리가 가능합니다. { "size": 0, "query": { "bool": { "must": [ { "bool": { "must": [ { "match_phrase": { "userid": { "query": "root", "slop": 0 } } }, { "match_phrase": { "action": { "query": "failed_password", "slop": 0 } } } ] } } ], "filter": [ { "bool": { "must": [ { "range": { "@timestamp": { "from": "now-30m", "to": "now" } } } ] } } 쿼리에 만족하는 조건이 있다면 아래와 같은 결과가 나타납니다. { "_shards": { "total": 9, "failed": 0, "successful": 9, "skipped": 0 }, "hits": { "hits": [], "total": { "value": 4, "relation": "eq" }, "max_score": null }, Per Query Monitor 은 위와 같은 결과가 나왔을 경우 trigger 조건에 만족한다면 단일 alert 이 한 개 발생하는 방식입니다. - Per Bucket Monitor 이 방식은 쿼리에 Aggregation 를 설정하여 Bucket 단위 별로 trigger 조건을 검사하고 alert 을 발생시키는 방식입니다. Per Query Monitor 과 동일한 조건의 쿼리에 아래와 같은 Aggregation query 가 추가되는 형태입니다. "aggregations": { "by_agg": { "terms": { "field": "host.keyword", "order": [ { "_count": "desc" }, { "_key": "asc" } ] } } } host 라는 필드로 group by 와 같은 집계를 하면 결과는 host 단위의 buckets 가 생성되고 각각의 bucket 에 개수가 포함되게 됩니다. 각각의 bucket 에 포함된 개수가 trigger 조건에 만족한다면 만족하는 만큼 alert 이 발생하게 되는데 이 부분이 Per Query Monitor 방식과 차이점이 되겠습니다. { ... "aggregations": { "by_agg": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "doc_count": 2, "key": "testhostname1" }, { "doc_count": 2, "key": "testhostname2" } ] } } } - Monitor API curl -X POST "https://localhost:9200/_plugins/_alerting/monitors/_search?pretty=true" -k -H "Content-Type: application/json" -d '{}' 아래와 같이 등록한 monitor 정보를 JSON 포맷으로 조회할 수 있습니다. Monitor 관련 몇 가지 API를 소개합니다. Create, Update 등 기본적인 기능 외에 설정한 Monitor 를 실행 시킬 수 있는 Monitor RUN API 도 제공 됩니다. 필요에 따라서 자신의 시스템에서 직접 실행시키는 로직을 구현해 볼 수 도 있을 것 같구요. 설정 내용을 미리 시뮬레이션 해서 결과를 테스트 해볼 수 있는 기능으로 활용해도 좋을 것 같습니다. Monitor Create POST _plugins/_alerting/monitors Monitor Update PUT _plugins/_alerting/monitors/<monitor_id> Monitor Delete DELETE _plugins/_alerting/monitors/<monitor_id> Monitor Run POST _plugins/_alerting/monitors/<monitor_id>/_execute 4. Trigger Trigger 는 Monitor 에 설정한 쿼리의 결과를 입력으로 Alert 을 발생 시킬 조건을 설정하는 과정입니다. 이 부분도 Per Query Monitor 과 Per Bucket Monitor 방식이 차이가 있습니다. Per Query Monitor는 쿼리의 결과가 단순 개수(hits)이기 때문에 개수 연상에 대한 true, false 로 결과를 얻습니다. 물론 결과가 true 인 경우에만 alert 이 발생하는 조건이 되겠죠. Per Bucket Monitor 방식은 개수 조건을 설정 하는 건 동일하지만 Aggregation 문에 정의된 key 명을 parent_bucket_path 에 맞춰 줘야 된다는게 다른 점입니다. Trigger condition 에서 설정한 조건이 만족한다면 bucket 단위로 결과 구해지게 됩니다. [ { "doc_count": 3, "key": "testhostname1" }, { "doc_count": 4, "key": "testhostname2" } ] 만약 실제로 이런 결과가 나왔다면 alert testhostname1, testhostname2 두 개의 alert 이 발생하게 됩니다. 5. Alert Monitor -> Trigger 조건이 만족하였다면 Alert 이라는 단위의 알림이 생성됩니다. Alert 은 Action 과 연계되었을 때 외부로 통보 등의 전달 기능을 수행할 수가 있고, 이런 연계 설정이 없다면 단순히 alert 이라는 데이터가 하나 신규로 생성되었다고 보면 됩니다. Opensearch Dashboard Alerts 메뉴에서는 아래와 같이 발생된 Alert 이 조회 됩니다. Alert 단위 별로 구체적으로 확인할 수 있는 방법은 없는 것 같고, Opensearch Dashboard 에서는 조회할 수 있는 정보는 이 정도가 전부인 것 같습니다. Alert은 발생 시점부터 Completed 될 때까지 아래 상태로 관리가 됩니다. - Active 조건이 만족하여 발생된 상태이고 아무런 처리가 되지 않은 상태라고도 합니다. - Acknowledged 관리자가 확인했다 정도의 의미를 부여할 수 있을 것 같은데요. 이 상태로 변경된 후부터 조건이 만족 했는데도 Alert 이 발생하지 않는 것처럼 보여질 수도 있습니다. 하지만 특정 시점이 되면 다시 Alert 이 발생하게 되는데 좀 애매한 운영 상태라고 보여집니다. 정확한 것은 이 상태 이후 실제 Alert을 발생시키는 조건이 해제 되었다가 다시 조건이 만족하게 된다면 Alert 이 발생하게 됩니다. Alert이 계속 발생되는 조건이라면 계속 Acknowledged 상태가 유지 되는 거라서 추가 Alert 이 발생되지 않는다는 오해에 소지가 있을 수도 있겠네요. 1번과 같이 Acknowledged 상태라도 조건이 만족하고 있는 상태라면 기존 상태가 유지가 되고, 2번 처럼 조건이 불만족 상태가 되면 상태는 Completed 상태가 되어 Alert 은 종료 처리됩니다. 3번처럼 이후 다시 조건이 만족한다면 새로운 Alert 이 발생하게 됩니다. - Completed Alert이 발생하는 조건 즉 Trigger 조건이 만족하지 않는 경우 기존 발생된 Alert 상태는 Completed 상태로 전환됩니다. 이후 다시 조건이 만족한다면 새로운 Alert 이 발생하게 됩니다. 개발 중에 이슈 사항 중 하나였다면 Completed 상태를 관리자가 임의로 변경할 수 없다는 것입니다. Alerting 시스템의 철학인지는 모르겠지만 상태 변경은 Acknowledged 만 가능하다는 것입니다. 즉 Completed는 Alerting 자체에서 조건의 만족 상태에 따라 변경해 주는 상태이고, 개발중인 시스템에서 Completed 상태를 별도로 운영하기 위해서는 자체적인 상태 처리 로직이 추가 되어야 됩니다. -Alert API curl -XGET "https://localhost:9200/_plugins/_alerting/monitors/alerts?pretty=true" -k 아래와 같이 발생한 Alert 리스트를 JSON 포맷으로 조회할 수 있습니다. 6. Action Alert 이 발생했을 때 관리자에게 통보하는 방식과 통보 메시지 등을 설정하는 기능입니다. Channel 이라는 설정을 하게 되는데 쉽게 말하면 통보 수단을 의미하는 거고 기본적으로 아래와 같은 통보 수단을 제공합니다. 기존에 자체적인 alert 처리 서비스가 있어서 이 서비스를 활용하고자 Custom webhook 방식을 사용했습니다. Action > Notification 에서 정의하는 Message 를 JSON 형식으로 우리의 alert 처리 서비스에 전달하는게 목적입니다. 전체적인 Action > Notification 설정은 아래와 같습니다. - Message 통보 수단을 통해 전달된 메시지 내용을 정의합니다. { "alertmessage": { "monitor": "{{ctx.monitor.name}}", "monitorid": "{{ctx.monitor._id}}", "trigger": "{{ctx.trigger.name}}", "severity": "{{ctx.trigger.severity}}", "period_start": "{{ctx.periodStart}}", "period_end": "{{ctx.periodEnd}}", "results": {{#toJson}}ctx.results{{/toJson}}, "deduped_alerts": [ {{#ctx.dedupedAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.dedupedAlerts}} ], "new_alerts": [ {{#ctx.newAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.newAlerts}} ], "completed_alerts": [ {{#ctx.completedAlerts}} { "id": "{{id}}", "bucket_keys": "{{bucket_keys}}" } {{/ctx.completedAlerts}} ] } } Message 에 사용할 수 있도록 제공되는 대략적인 정보 입니다. - ctx.monitor : Moniter 설정 정보 - ctx.trigger : Trigger 설정 정보 - ctx.newAlerts : 신규 생성 Alert 정보 - ctx.completedAlert : 완료된 Alert 정보 - ctx.dedupedAlerts : 기존 생성된 Alert 중복 생성 정보 ctx 내용 전체를 확인해 보면 활용할 수 있는 내용이 그렇게 많지는 않습니다. 목표로 했던 기능 중에 Alert 서비스에 발생된 Alert 의 실제 쿼리 범위 시간을 구해야 되는 했던 기능이 있었습니다. 아래 두 가지 값이 제공되어 값을 확인해 보니 조건 쿼리가 실행되는 interval 시간으로 확인 되어 실제로 사용하지는 못했습니다. ctx.periodStart ctx.periodEnd 대신 ctx.periodEnd 시간에 실제 쿼리 내에 정의된 time range 값을 계산하여 실제 쿼리 범위 시간을 구하는 방식으로 처리 했습니다. - Perform action Alert 단위에 대한 Action 처리 방식은 아래와 같은 종류도 설정할 수 있습니다. - Per execution: 조건을 만족하는 alert 이 여러 개여도 action 은 한번만 처리. - Per alert: 조건을 만족하는 alert 이 여러 개면 각각마다 action 을 수행함. 우리는 각각의 Alert 마다 action 처리가 필요하기 때문에 Per alert 방식을 사용했고, Actionable alerts 아래와 같이 설정 했습니다. - New: 신규 Alert 에 대한 Action 처리를 위해서 반드시 필요한 부분이고 - De-duplicated: 이미 생성된 Alert 에 대해 동일한 조건이 만족되었을 때 Action 을 처리할 것인가를 설정하는 내용입니다. 기존 생성된 Alert 의 상태 정보를 업데이트 시켜 주기 위해서는 이 설정을 추가해줘야 됩니다. - Completed: 발생된 Alert 의 조건이 만족하지 않게 된 경우 Action 처리 여부를 설정합니다. 기존 발생된 Alert을 자동으로 완료 처리해주려면 이 설정을 추가해줘야 됩니다. Action 에서 설정된 내용 데로 통보 수단을 통해 충실히 전달된다면, 실제 서비스 로직 에서 제대로 처리해줘야만 됩니다. - Notication message 처리 Alert 을 처리하는 서비스 로직 에서는 아래 같이 Alerting Notication 으로 message 를 전달 받게 됩니다. 자체 서비스 로직 에서는 이 정보를 분석하여 발생된 Alert 를 관리하는 기능을 구현할 수 있습니다. 어떤 감시설정으로 발생된 Alert 인지를 식별할 수 있는 정보입니다. 서비스 로직에서 감시설정, Alert 을 식별하여 처리하는데 필요한 정보 입니다. priod_start, period_end : 감시설정의 조건 쿼리가 실행되는 interval 시간 입니다. 만약 쿼리문에 time range 값이 아래처럼 정의 되어 있고 alert 이 발생된 시점에 time range 를 구하려 한다면 위의 시간 값 만으로는 어렵습니다. "range": { "@timestamp": { "from": "now-30m", "to": "now", "include_lower": true, "include_upper": true, "boost": 1 } } } } Period_start 에 30m을 더하거나 period_end 에서 30m 빼는 방식으로 실제 time range 값을 구할 수 있었습니다. results[0].aggregations.by_agg.buckets 이 값에서는 검색조건 결과에 해당하는 buckets 결과 값을 구체적으로 조회할 수 있습니다. New_alerts : 신규 생성 alert deduped_alerts : 기존 발생된 alert completed_alerts : 완료된 alert 위와 이 서비스 로직에서 alert 의 상태를 구분하여 처리할 수 있습니다. 7. 마치며 이번 글에서는 Alerting Plugin 기능을 큰 카테고리별로 나누어, 주로 OpenSearch Dashboard 를 기반으로 설명했습니다. Alerting Plugin 은 기본적인 API 를 제공하므로, 위에서 다룬 모든 기능은 REST API 를 통해서도 동일하게 활용할 수 있습니다. 따라서 Alerting Plugin 을 탐지 엔진으로 잘 활용한다면, 운영 환경에서 안정적이고 효율적인 탐지 체계를 구축할 수 있습니다.
2025.09.15
기술이야기
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
기술이야기
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
IT 시스템은 서버, 네트워크, 애플리케이션이 밀접하게 상호작용하는 다계층 구조로 운영됩니다. 이런 환경에서 발생하는 장애는 더 이상 단일 장비의 문제가 아니라, 여러 구성 요소가 연쇄적으로 영향을 주고받으며 서비스 품질에 직결됩니다. 예를 들어 한 서버의 경고는 단순한 일시적 리소스 부하에 불과할 수 있지만, 동시에 다른 계층에서 오류가 발생하면 곧바로 서비스 중단으로 이어질 수 있습니다. 반대로 특정 장비에서 치명적인 이벤트가 발생하더라도, 전체 서비스 아키텍처 차원에서는 영향도가 제한적인 경우도 흔히 발생합니다. 하지만 실제 운영 현장에서는 이런 복잡한 상황이 그대로 고려되지 못하는 경우가 많습니다. 많은 관제 환경이 여전히 장비 단위의 심각도에만 의존하기 때문에, 실제 서비스 영향과 상관없이 불필요한 알람이 쏟아지거나 반대로 중요한 장애 신호를 놓치는 일이 반복되곤 합니다. 그 결과 운영자는 수많은 이벤트 속에서 우선순위를 정하기 어렵고, 대응 속도 역시 느려질 수밖에 없습니다. Zenius EMS 솔루션의 핵심 모듈인 ERMS(Event Relation Management System)는 이러한 한계를 보완합니다. 개별 이벤트를 단순히 나열하는 대신, 규칙(Rule)으로 연계해 서비스 단위의 장애 여부를 판단하고 운영자가 즉시 상황을 이해할 수 있도록 도와줍니다. 덕분에 단순히 “어느 장비에서 문제가 발생했는가”를 넘어, “서비스 전체가 지금 어떤 상태인가”라는 더 중요한 질문에 답할 수 있습니다. 이번 글에서는 구체적인 구성 방법, 그리고 실제 운영 환경에서의 활용 사례를 통해, IT 시스템 장애를 어떻게 더 정확하고 효과적으로 관리할 수 있는지 살펴보겠습니다. Zenius EMS 솔루션의 ERMS 기능은?! 먼저 장비 관점에서의 이벤트 모니터링과 ERMS가 이벤트를 처리하는 방식이 어떻게 다른지 살펴보겠습니다. - 장비 관점에서의 이벤트 모니터링 CPU 사용률 경고, 프로세스 다운, 네트워크 지연 등 각 장비에서 발생하는 이벤트를 개별적으로 수집하고 표시하는 방식입니다. 특정 장비의 상태를 빠르게 확인할 수 있다는 장점이 있지만, 서비스 전체의 영향도를 파악하기에는 한계가 있습니다. - ERMS 이벤트 발생 로직 : 장비에서 발생한 이벤트들에 대한 Rule 설정으로 , 서비스 관점에서의 장애 모니터링 ERMS는 장비에서 발생한 여러 이벤트를 단순 나열하지 않고, 규칙(Rule)으로 연계해 종합적으로 해석하는 방식입니다. 여러 이벤트의 조합을 통해 서비스 단위의 장애 여부를 표현하기 때문에, 운영자는 불필요한 알람에 휘둘리지 않고 실제로 중요한 신호에 집중할 수 있습니다. Zenius EMS 솔루션의 ERMS 기능구성 및 확인절차 ERMS를 제대로 활용하기 위해서는 먼저 서비스 등록과 모니터링 확인 절차를 거쳐야 합니다 Step 1. [ ERMS > 설정 > 등록 ] : 신규 서비스를 등록 합니다. ① 서비스명 : 모니터링 페이지에 보여질 서비스명 입력 ② 연산 조건 : 연산 조건을 선택/입력하여 이벤트를 발생 시킬 조건 설정 - OR : 하위 서비스 또는 대상들의 상태가 하나라도 발생하면 설정한 심각도로 상태 표현 - AND : 하위 서비스 또는 대상들의 상태가 전부 발생하면 설정한 심각도록 상태 표현 - 사용자정의 : 하위 서비스 또는 대상들의 상태가 설정한 수 이상일 경우 설정한 심각도로 상태 표현 - 심각도별 개수 : 하위 서비스 또는 대상들의 심각도별 개수가 설정한 값 이상일 경우 상태 표현 ③ 심각도 : 연산 조건에 따른 이벤트 발생 시 보여지는 심각도 설정 - 인프라/감시설정의 심각도와 별개로 발생시킬 심각도 지정> 하위대상 - 선택한 서비스 대상 중 가장 높은 심각도 등급으로 상태 표시 ④ 서비스 대상 : 연산 조건에 따라 이벤트를 발생 시킬 대상 선택 - 서비스 : ERMS에 등록 된 서비스 선택 - 장비/대상 : 다른 인프라에 등록 된 장비 선택 - 감시설정 : 다른 인프라에 등록 된 감시설정 선택(서비스 대상 설정은 곧 ‘서비스 장애를 어떻게 정의할 것인가’와 직결되므로, 인프라 구조와 서비스 흐름을 고려해 신중히 지정해야 합니다.) ⑤ 이벤트 제목 : 연산 조건에 만족하여 이벤트 발생 시 보여지는 명칭 ⑥ 통보설정 : 이벤트 발생 시 설정된 통보방법 및 수신자에게 통보 되도록 설정 * SMS, 이메일, 메신저 등 다양한 채널과 연동할 수 있으며, 사전에 통보 방법이 반드시 정의되어 있어야 합니다. 운영자, 서비스 담당자, 온콜 팀 등 그룹 단위 지정이 가능해, 장애 대응 체계와 긴밀하게 연결됩니다. Step 2. [ ERMS > 모니터링 ] : 등록 확인 앞서 등록한 서비스와 Rule이 정상적으로 반영되었는지 모니터링 화면에서 확인합니다. 트리 구조로 전체 → 그룹 → 서비스 → Rule → 장비 단위까지 계층적으로 점검할 수 있어, 설정 누락이나 오작동 여부를 쉽게 파악할 수 있습니다. Zenius EMS 솔루션의 ERMS 활용 가이드 ERMS를 실제 환경에서 적용할 수 있는 대표적인 사례를 살펴보겠습니다. Case 1. 연관 서비스 간 이벤트 관리 ERMS를 활용하면 서로 다른 인프라에서 발생한 이벤트를 하나의 논리적 서비스 단위로 묶어 관리할 수 있습니다. 이를 통해 단일 장비 경보가 아니라, 실제 서비스 차원의 장애 인지가 가능해집니다. [Web 서비스와 연관 된 감시설정을 등록한 사례] 웹 서비스와 관련된 CPU 사용률, 프로세스 상태, 네트워크 연결 상태 등 여러 감시설정을 하나의 서비스로 등록합니다. 등록된 서비스는 “N개 이상 이벤트 발생 시”라는 조건으로 Rule을 구성합니다. 조건이 충족되면 서비스 메인 담당자(예: 홍길동)에게 SMS, E-mail 등으로 자동 통보가 이뤄집니다. 이를 통해 운영자는 단순히 경보를 나열하는 대신, 서비스 전체의 관점에서 중요한 신호만 걸러내어 신속히 대응할 수 있습니다. Case 2. 이중화 구성 관리 이중화 서버나 네트워크 장비 환경에서는 한쪽 노드가 장애를 겪더라도 서비스는 계속 유지될 수 있습니다. 하지만 양쪽 노드가 동시에 장애를 겪는 순간 서비스는 치명적인 상황에 빠지게 됩니다. ERMS는 이러한 특성을 Rule로 정의해 긴급 상황을 빠르게 알릴 수 있습니다. [이중화 구성에 대한 관리 사례] (1)신규 서비스 등록 시 이중화 구성 된 서버의 “서버다운” 감시설정 선택 (2)연산 조건, 심각도, 이벤트 제목 등을 설정하여 해당 조건에 대한 이벤트 발생 시 표현 될 정보 설정 - 연산 조건 : 이중화 구성에 대한 Rule 설정임으로 연산 조건은 “AND”로 설정 - 심각도 : 연산 조건 만족 시 발생할 이벤트 등급 - 이벤트 제목 : 해당 이벤트 발생 시 보여지는 명칭 (상황 심각성을 인지 할 수 있는 문구로 작성) (3)수신자/통보방법 설정을 통해 이벤트 발생 시 해당 서버에서 운영중인 서비스와 연관 된 담당자들에게 긴급 상황에 대한 인지가 가능하도록 합니다. 이를 통해 단일 장애에 과잉 반응하지 않으면서도, 실제 서비스 전체에 영향을 주는 상황은 놓치지 않고 빠르게 인지할 수 있습니다 Case 3. 서비스맵을 통한 시각화 모니터링 ERMS는 등록된 서비스를 시각화해 한눈에 파악할 수 있는 서비스맵 기능을 제공합니다. Sunburst, Bubble 형태의 차트를 활용하면 전체 서비스 구조와 이벤트 상태를 직관적으로 확인할 수 있습니다. [오버뷰 기능을 통한 시각화 사례] EMS > 설정 > 컴포넌트에서 “ERMS 서비스맵” 컴포넌트를 등록합니다. 이름, 제목, 서비스, 차트 종류(Sunburst/Bubble), 표시 단계 수 등을 설정합니다. 이후 등록된 컴포넌트를 오버뷰 화면에 추가합니다. ERMS 서비스 단위의 이벤트 현황이 시각적으로 표시됩니다. 다른 컴포넌트(성능 지표, 이벤트 이력 등)와 조합하면, 장애 상황과 성능 상태를 통합적으로 모니터링할 수 있습니다. 색상 변화, 계층 구조, 아이콘 조합 등을 통해 복잡한 운영 상황을 직관적으로 해석할 수 있습니다. 이를 통해 운영자는 이벤트 목록이 아닌 서비스 단위의 전체 그림을 기반으로 문제를 인지하고 대응 우선순위를 판단할 수 있습니다. [Sunburst, Bubble 차트종류] (1)오버뷰 구성 시 앞에서 생성한 컴포넌트를 추가하여 ERMS 서비스 단위 기준 이벤트와 다양한 컴포넌트와의 조합을 통해 전체적인 운영상황을 시각화하여 가시적인 모니터링이 가능 합니다. [ERMS 서비스 상태 오버뷰 시각화 구성] Zenius EMS 솔루션의 ERMS 구체적 활용 효과 기존 이벤트 관리 환경에서는 장애 여부를 개별 장비의 심각도만으로 판단했습니다. 이 때문에 중요도가 낮은 장비에서 발생한 이벤트라도 ‘치명’으로 기록되면, 실제 서비스 영향과 무관하게 서비스 전체가 그대로 ‘치명’ 장애로 표시되곤 했습니다. 반대로 여러 장비에서 동시에 문제가 발생해 서비스에 큰 부담을 주는 상황임에도, 단일 이벤트 기준만으로는 이를 제대로 드러내기 어려웠습니다. 결국 서비스 차원에서 실질적인 장애 여부를 구분하기 힘들었고, 운영자는 불필요한 경보와 오판 속에서 효율적인 대응이 어려웠습니다 ERMS를 도입하면 이런 한계를 극복할 수 있습니다. 이벤트 간의 연관 관계를 규칙(Rule)으로 정의하여 단순한 장비 경보가 아니라 서비스 단위의 장애를 판정할 수 있기 때문입니다. 예를 들어, A 장비에서 ‘치명’ 이벤트가 발생하고 동시에 B 장비에서 ‘주의’ 이벤트가 발생한다면, 이를 묶어서 서비스 전체를 ‘긴급’ 상태로 표현할 수 있습니다. 이처럼 서비스 관점에서 장애를 재정의하면 실제 영향이 큰 상황만 선별적으로 드러나고, 불필요한 알람은 크게 줄어듭니다. 운영자는 개별 이벤트에 매달릴 필요 없이 서비스 전체 상태를 기준으로 명확하게 판단할 수 있으며, 그 결과 대응의 정확성과 속도가 모두 향상됩니다. 서비스 품질 관리 또한 한층 안정적으로 이루어집니다. IT 시스템 장애는 이제 단순히 개별 장비 이벤트만으로는 정확히 판단하기 어렵습니다. Zenius EMS 솔루션의 ERMS 모듈은 이벤트를 서비스 단위의 규칙으로 묶어 해석함으로써, 불필요한 알람을 줄이고 실제로 중요한 장애만 명확히 드러냅니다. 서비스 등록과 Rule 설정, 시각화 기능을 통해 운영자는 장애 발생 시점을 더 빠르게 파악하고 우선순위를 명확히 정할 수 있으며, 결과적으로 서비스 안정성과 운영 효율성을 동시에 확보할 수 있습니다. 즉, ERMS는 IT 시스템을 장비 중심의 모니터링에서 서비스 중심의 관리로 전환하게 만드는 핵심 도구라 할 수 있습니다.
2025.09.09
기술이야기
브라우저 모니터링 시스템 Zenius BRMS의 주요 기능과 특장점은?!
기술이야기
브라우저 모니터링 시스템 Zenius BRMS의 주요 기능과 특장점은?!
디지털 서비스에서 사용자가 직접 체감하는 경험은 서비스 만족도를 좌우합니다. 로그인 버튼을 눌렀는데 화면이 전환되지 않는다거나 chrome 환경에서만 동작하고 타 브라우저에서는 호환되지 않는 등의 문제는 누구나 한 번쯤 겪어봤을 것입니다. 이런 작은 불편이 반복되면 사용자는 쉽게 이탈하고, 브랜드 전체에 대한 신뢰도 역시 떨어집니다. 최종 사용자 경험을 모니터링 하지 않는 것은 최고의 스킬을 지닌 축구선수가 실내 경기장에서만 훈련받고 필드에서는 뛰어보지 않는 것과 같습니다. 그러나 PC, 모바일, 태블릿 등 사용자가 다양한 기기를 오가며 서비스를 이용하는 상황에서, 운영자가 모든 브라우저의 사용자 경험을 관찰하기는 쉽지 않습니다. 서버 로그를 수집하거나 백엔드 지표를 모니터링하는 것만으로는 사용자가 실제로 느끼는 경험을 알 수 없습니다. 결국 사용자 브라우저에서 실제로 발생하는 데이터를 기반으로, 체감 성능을 모니터링할 수 있는 체계가 필요합니다. 이에 따라서 Zenius BRMS 같은 브라우저 모니터링 시스템이 주목받고 있습니다. Zenius BRMS는 최종 사용자가 브라우저와 모바일 환경에서 겪는 여정을 그대로 추적해 보여줍니다. 페이지 로드 시간, 버튼 클릭 후 반응 속도, 오류 발생 여부까지 사용자가 겪는 체감 성능을 데이터로 전환해 운영자에게 제공합니다. 즉, Zenius BRMS는 사용자 경험의 사각지대를 제거하고, 서비스 품질을 선제적으로 관리하는 필수 솔루션입니다. 단순히 문제가 발생했을 때 대응하는 수준이 아니라, 데이터 기반으로 사용자 여정을 개선하고, 기업의 비즈니스 성과를 높이는 전략적 도구입니다. Zenius BRMS의 주요기능과 특장점을 자세히 살펴보겠습니다. 웹브라우저 모니터링 시스템, Zenius BRMS의 주요 기능 3가지 Zenius BRMS는 브라우저 환경에서 발생하는 성능 데이터와 사용자 행동 데이터를 실시간으로 수집하고 이를 자동으로 축적하여, 서비스 품질을 다각도로 분석할 수 있는 환경을 제공합니다. 운영자는 Core Web Vitals와 같은 성능 지표뿐만 아니라 세션 단위의 사용자 여정, 시간대별 성능 패턴까지 한눈에 조회할 수 있으며, 단일 항목 분석은 물론 복수 항목을 조합한 비교 분석도 수행할 수 있습니다. 이러한 기능은 실제 사용자의 경험을 정량적으로 파악하고 문제 발생 구간을 조기에 식별할 수 있도록 돕습니다. 특히 각 결과는 차트, 색상, 단위로 시각화되어 활용 효율을 높이며, 이를 기반으로 한 분석은 서비스 성능 개선, 사용자 만족도 제고, 예측 기반 운영 전략 수립 등 실질적인 성과 창출에 기여합니다. 1) 사용자 체감 성능 기반 모니터링 Zenius BRMS는 Core Web Vitals(LCP, INP, CLS)를 포함해 브라우저 성능의 핵심 지표를 자동으로 수집합니다. 세션, 페이지, 리소스, 에러 단위로 세분화된 모니터링을 제공하며, 퍼센타일 지표(P50, P75, P95)를 통해 평균값 뒤에 숨은 실제 사용자 분포까지 파악할 수 있습니다. 또한 대시보드를 통해 로드 시간, 에러율, 방문자 수 등의 체감 성능도 직관적으로 확인할 수 있습니다. 이를 통해 운영자는 서비스의 성능 저하 원인을 시스템 관점에서만 확인할 수 있는 것이 아니라 리소스별 응답시간, 지역별 성능 속도 등 사용자 관점에서까지 정량적으로 확인할 수 있습니다. 이러한 데이터는 궁극적으로 사용자 만족도를 높여 이탈률을 줄이고 서비스 신뢰성을 강화하는 데 기여합니다. 2) 사용자 행동 분석과 세션 리플레이 세션 리플레이 기능은 사용자가 실제로 클릭한 버튼, 이동한 페이지, 발생한 에러 상황을 재현하는 것을 지원합니다. 사용자의 유입부터 탐색, 이탈 경로까지의 여정을 재구성 해주어 사용자가 겪은 경험 저하 구간을 쉽게 식별할 수 있습니다. 뿐만 아니라, rage click(사용자가 짧은 시간 안에 같은 위치 반복적 클릭), dead click(사용자가 클릭했지만 아무런 동작도 일어나지 않은 클릭), error click(클릭 시 JavaScript 에러 등 오류가 발생하는 경우)과 같은 품질 저하 요인도 포착합니다. 실무자는 단순 수치 데이터가 아닌 실제 사용자 경험을 재현할 수 있어, 조기 문제 원인 파악을 할 수 있습니다. 이를 토대로 개발자, 운영자, 마케팅 담당자가 시나리오를 공유하고 협업한다면 서비스 개선 주기 단축과 전환율 제고를 기대할 수 있습니다. 3) 일별·시간대별 현황 분석 Zenius BRMS는 일별·시간대별로 성능 현황과 에러 분포를 분석해 시간 패턴 기반 인사이트를 제공합니다. 논리 연산 기반 필터링을 통해 특정 조건에 맞춘 분석도 가능하며 접속 환경별 데이터를 조합해 문제 발생 패턴을 정밀하게 탐지할 수도 있습니다. 예를 들어 이 분석 기능을 통해 매일 12시 모바일 환경에서 결제 오류가 잦은 것을 발견하고 점심시간 대에만 노출되는 팝업 스크립트를 점검할 수도 있습니다. 이처럼, 시간대별로 발생한 문제를 파악하는 것은 성능 저하의 주기적 원인을 식별하는 데 효과적입니다. 또한 서비스 배포 이후 영향도 분석에도 활용하여 QA(Quality Assurarance) 작업을 강화할 수 있습니다. 웹브라우저 모니터링 시스템, Zenius BRMS의 3가지 특장점 Zenius BRMS는 브라우저 성능 모니터링 기능만을 제공하는 것이 아니라, 운영자가 사용자들의 웹 브라우저 만족도 저하 원인을 직관적으로 파악할 수 있도록 설계된 사용자 친화 플랫폼입니다. 다음은 Zenius BRMS가 갖는 세 가지 주요 특장점입니다. 1)지능형 장애 감지와 알림 체계 운영자는 감시 항목별 심각도·임계치를 설정하고, 이벤트 발생 조건을 논리적으로 구성할 수 있습니다. 설정한 이벤트가 발생되면 단계별로 지정해둔 수신자에게 자동으로 알림이 보내집니다. 알림 방식으로 문자, 이메일, 푸시 앱, 음성 메일 등을 지원하며 기존 사용하시던 Slack, Teams 등의 툴과의 연동도 가능합니다. 운영자는 지능형 장애 감지와 알림 체계를 통해 장애 발생 사실을 실시간으로 파악하고 신속히 대응할 수 있습니다. 다단계 알림 구조는 체계적 보고 라인 구축을 통해 서비스 안정성을 제고합니다. 2)운영 관리 효율성과 보안 강화 Zenius BRMS에서는 수집된 데이터에 대해 어플리케이션/사용자 기준으로 개별 및 그룹 단위의 모니터링 권한을 설정할 수 있습니다. 운영 목적 또는 사용자 역할에 따라 권한을 설정할 수 있어 보안 관리에 용이합니다. 또한 브라우저 성능 수집 시의 세션 샘플링 비율, 리플레이 샘플링 비율 설정도 자유롭고 쉽게 변경할 수 있도록 돕기 때문에 운영 관리 효율성도 제고시킬 수 있습니다. 3)EMS 프레임워크 기반의 통합성과 확장성 Zenius BRMS는 EMS(Enterprise Management System) 프레임워크 환경에서 동작하기 때문에, 다른 관제 대상과 손쉽게 연계되어 통합 관리가 가능합니다. 이를 통해 운영자는 브라우저 성능뿐만 아니라 서버, 네트워크, 애플리케이션 등 다양한 관리 대상을 하나의 플랫폼에서 종합적으로 확인할 수 있습니다. 또한 모듈형 구조를 기반으로 해 확장이 용이하므로, 서비스 규모 확대나 신규 모니터링 항목 추가 시에도 유연하게 대응할 수 있습니다. 더불어 APM 성능 항목과 통합상황판(Overview)을 구성한다면, 웹 서비스 전반에 대한 문제 원인과 영향도를 신속히 파악할 수 있습니다. 이러한 EMS 기반 통합성과 확장성은 운영자의 관리 효율성을 높이고, 안정적인 서비스 품질 유지에 기여합니다. Zenius BRMS는 웹 서비스의 성능을 기록하는 것에 머무르지 않고, 실제 사용자가 느낀 속도와 반응을 데이터로 보여주며 행동 흐름까지 되짚어줍니다. Zenius BRMS는 모니터링 외에도 분석, 장애 감지, 알림 등 운영자를 위한 기능으로 안정적인 서비스 운영할 수 있도록 돕겠습니다. 기술 개발에만 힘쓰며 실제 사용자가 서비스를 얼마나 편리하게 사용하는지 고민하는 것을 놓치고 있었다면, 또는 다양한 디바이스나 지역에서의 성능 데이터 수집에 어려움을 가지고 있었다면, Zenius BRMS와 함께 서비스 품질의 한 끝을 달리해보는 것은 어떨까요? 빠르게 변하는 디지털 환경에서 사용자 경험을 놓치지 않으려는 운영자에게 Zenius BRMS 는 의지할 수 있는 기반이 될 것입니다.
2025.09.08
기술이야기
서버 관리 툴, Zenius SMS를 통한 Docker 기반 컨테이너 모니터링 팁
기술이야기
서버 관리 툴, Zenius SMS를 통한 Docker 기반 컨테이너 모니터링 팁
최근 IT 운영 환경에서는 컨테이너 기반 배포 방식이 빠르게 자리 잡고 있습니다. 특히 Docker는 가볍고 이식성이 뛰어나며, 새로운 서비스를 빠르게 배포할 수 있다는 장점 덕분에 개발과 운영 전반에서 가장 많이 활용되는 기술 중 하나입니다. 하지만 이렇게 편리한 Docker도 관리 측면에서는 쉽지 않은 과제를 안고 있습니다. 컨테이너는 짧은 주기로 만들어졌다가 사라지고, 서비스 부하에 따라 개수가 급격히 늘어나거나 줄어듭니다. 이런 특성 때문에 기존 서버 모니터링만으로는 전체 상황을 정확히 파악하기 어렵습니다. Zenius SMS는 서버·네트워크·스토리지를 비롯해 Docker 환경까지 아우르는 통합 모니터링 플랫폼으로, HTML5 기반 UI와 강력한 데이터 수집·분석 기능을 제공합니다. 이를 통해 운영자는 컨테이너의 성능, 로그, 프로세스, 파일시스템, 이미지 정보를 한 화면에서 관리하고 분석할 수 있습니다. 서버 모니터링 툴, Zenius SMS에서 Docker 기반 컨테이너 모니터링을 구성하고 확인하는 절차, 그리고 이를 실무에서 활용하는 방법을 단계별로 살펴보겠습니다. 모니터링 기능 구성과 확인 절차 서버 관리 툴 Zenius SMS의 Docker 기반 컨테이너 모니터링 기능은 단순히 데이터를 수집하는 것에서 그치지 않고, 설정 단계부터 실시간 모니터링, 세부 정보 조회까지 일련의 명확한 흐름을 갖추고 있습니다. 이 절차를 이해하면, 기능을 효율적으로 구성하고 운영 현황을 정확하게 파악할 수 있습니다. Docker 모니터링을 시작하는 방법과 각 화면에서 확인할 수 있는 정보, 그리고 이를 통해 어떤 분석이 가능한지를 차례대로 살펴보겠습니다. Step 1. 에이전트 설정에서 모니터링 활성화 및 수집 주기 지정 모니터링을 시작하기 위해서는 먼저 에이전트 설정에서 컨테이너 모니터링 기능을 켜야 합니다. 메뉴 경로는 ‘SMS > 모니터링 > 모니터링 상세보기 > 에이전트 설정 > 일반 설정 > 모니터링 설정’입니다. 여기서 컨테이너/컨테이너 로그에 대한 모니터링 여부와 수집 주기를 켭니다. - 모니터링 주기(데이터 수집 주기): 30초 - 평균 기준 기간(수집 데이터를 평균 낼 기간): 5분 - 변화량 기준 기간(평균 데이터의 편차 산출 기간): 1분 이 단계에서 설정을 저장하면 이후 화면(컨테이너/이미지)에서 해당 주기로 수집된 데이터가 표출됩니다 Step 2. 컨테이너 화면에서 운영 현황 점검(성능·로그·프로세스·파일시스템) 컨테이너 모니터링에서 가장 핵심이 되는 화면은 바로 컨테이너 현황 화면입니다. 메뉴 경로는 다음과 같습니다. 메뉴 경로는 SMS > 모니터링 > 모니터링 상세보기 > 컨테이너 > 컨테이너입니다. 이 화면에서 컨테이너 이름, IP, 포트, 생성 시점 등 기본 운영 정보와 함께 하단의 세부 탭을 통해 컨테이너 단위 데이터를 확인합니다. - 성능: CPU 사용량, 메모리 점유율, 네트워크 인터페이스 입출력(NIC In/Out), 블록 디바이스 입출력(Block In/Out)과 같은 리소스 지표를 실시간으로 보여줍니다. 이를 통해 운영자는 컨테이너별로 리소스 사용 패턴을 비교하거나, 특정 시점에 과부하가 발생했는지를 빠르게 확인할 수 있습니다. - 로그: 컨테이너에서 발생하는 이벤트 및 상태 변화 로그를 수집해 보여줍니다. 예를 들어, 컨테이너가 재시작되었거나, 특정 에러 이벤트가 발생했을 때 이를 실시간으로 확인할 수 있습니다.이는 단순한 성능 지표만으로는 알 수 없는 운영 이슈의 원인을 파악하는 데 중요한 단서를 제공합니다. (컨테이너 & 컨테이너 로그) (컨테이너 & 컨테이너 프로세스 데이터) - 프로세스: 컨테이너 내부에서 실행 중인 프로세스 목록과 상태를 보여줍니다. 어떤 프로세스가 CPU나 메모리를 과도하게 점유하고 있는지, 비정상적으로 종료된 프로세스는 없는지를 직접 확인할 수 있습니다. 이는 서버 수준의 모니터링이 아닌, 컨테이너 내부 동작까지 투명하게 추적할 수 있다는 점에서 운영 안정성 확보에 큰 도움이 됩니다. - 파일시스템: 컨테이너 내부에 마운트된 파일 경로, 접근 권한, 사용량 등 파일시스템 관련 정보를 제공합니다. 이를 통해 특정 컨테이너에서 파일 권한 문제나 디스크 사용량 초과와 같은 장애 가능성을 조기에 발견할 수 있습니다. (컨테이너 & 컨테이너 파일 시스템 데이터) Step 3. 이미지 화면에서 이미지 메타데이터 확인 컨테이너는 기본적으로 이미지(Image)를 기반으로 생성되기 때문에, 어떤 이미지가 사용되고 있으며 해당 이미지의 상태가 어떤지 확인하는 것은 운영 관리에서 매우 중요한 절차입니다. Zenius SMS에서는 이를 전용 화면을 통해 직관적으로 관리할 수 있도록 지원합니다. 메뉴 경로는 ‘SMS > 모니터링 > 모니터링 상세보기 > 컨테이너 > 이미지’입니다. 컨테이너 생성 기반이 되는 이미지명, 이미지 ID, 이미지 크기, 이미지 태그(및 상세) 등을 이미지별로 조회하여 버전/용량/태그 기준의 관리 및 추적에 활용할 수 있습니다. 활용 가이드 Docker 기반 컨테이너 모니터링 기능을 구성한 이후에는, 운영자가 상황에 맞게 다양한 화면과 기능을 활용할 수 있습니다. 이 과정은 정해진 절차를 단계별로 따라야 하는 것이 아니라, 필요에 따라 선택적으로 적용할 수 있는 여러 가지 케이스로 구성됩니다. 실제 운영 현장에서 자주 활용되는 대표적인 네 가지 케이스를 알아보겠습니다. Case 1. 성능 모니터링 차트 확인 Zenius SMS에서는 컨테이너 단위로 주요 성능 지표를 차트 형태로 제공합니다. CPU 사용률, 메모리 사용량, 네트워크 입출력, 디스크 블록 입출력 등 핵심 지표를 시간대별로 시각화하여 운영자는 리소스 사용 패턴과 부하 변화를 한눈에 파악할 수 있습니다. 특히 이 차트는 단순한 실시간 데이터만 보여주는 것이 아니라, 과거의 이력 데이터까지 함께 제공합니다. 이를 통해 현재 상태와 장기적인 추세를 동시에 분석할 수 있으며, 특정 시점에 발생한 급격한 변동도 쉽게 확인할 수 있습니다. 이런 조기 식별 능력은 장애 대응 속도를 높이고, 성능 저하를 예방하는 데 직접적인 도움을 줍니다. - 실시간 + 이력 데이터 동시 제공: 현재 상태와 과거 추세를 함께 분석 가능 - 이상 징후 조기 식별: 특정 시점의 급격한 변동을 신속하게 확인하여 대응 (컨테이너 & 컨테이너 성능) Case 2. 차트 제목 클릭으로 평균/최대치 확인 컨테이너 성능 차트는 단순히 그래프만 보여주는 것이 아니라, 제목을 클릭하면 해당 지표의 평균값과 최대값을 표 형태로 함께 제공합니다. 평균값은 일정 기간 동안의 전반적인 자원 사용 수준을 파악하는 기준선 역할을 하고, 최대값은 특정 시점에서의 부하 피크를 정확히 식별하는 데 유용합니다. 이 기능을 활용하면 리소스 사용의 ‘일상적인 수준’과 ‘최대 부하 상황’을 동시에 파악할 수 있어 용량 계획이나 성능 튜닝에 실질적인 인사이트를 제공합니다. - 평균값 활용: 장기적인 리소스 사용 기준선 설정 - 최대값 활용: 부하 집중 시간대 파악 및 용량 계획 수립 (컨테이너 성능_계속) Case 3. 데이터 보기 기능 활용 차트만으로는 성능 변화를 직관적으로 확인할 수 있지만, 세밀한 분석에는 한계가 있습니다. 이를 보완하는 기능이 바로 ‘데이터 보기’ 버튼입니다. 해당 버튼을 누르면 차트에 표시된 지표가 시간 단위의 세부 데이터로 변환되어 표 형태로 표시됩니다. 운영자는 이를 통해 순간적인 성능 저하나 특정 이벤트 발생 시점을 더 정밀하게 추적할 수 있습니다. 또한 이 데이터를 CSV 형식으로 내보내어 장기 분석이나 외부 보고서 작성에도 활용할 수 있습니다. - 세부 데이터 조회: 시간 단위 기록으로 원인 분석 정확도 향상 - 데이터 내보내기: CSV로 추출해 장기 분석·외부 보고서 작성에 활용 가능 (컨테이너 성능_통계 데이터) Case 4. 차트/데이터 비교 분석 여러 지표나 컨테이너 간 데이터를 비교하여 상관관계를 파악할 수 있습니다. 예를 들어, CPU 사용량이 높은 컨테이너와 네트워크 트래픽이 많은 컨테이너를 함께 비교하면 특정 워크로드가 어떤 방식으로 리소스를 소모하는지 명확히 드러납니다. 이렇게 교차 분석을 수행하면 단일 지표만 볼 때 놓치기 쉬운 상관관계를 발견할 수 있으며, 문제 원인을 더 정확하게 짚어낼 수 있습니다. - 다중 지표 비교: 다양한 성능 요소를 교차 검증 - 장애 원인 분석: 시간대별 변화 패턴 비교로 문제 지점 식별 (컨테이너 통계_데이터 보기) 컨테이너 환경은 빠른 배포와 유연한 확장성을 제공하는 대신, 운영자가 관리해야 할 복잡성과 변동성이라는 과제를 함께 안겨줍니다. 서버 관리 툴 Zenius SMS의 Docker 모니터링 기능은 이러한 과제를 해결하기 위해 통합 UI, 실시간 데이터 분석, 심층 진단, 보안 점검을 하나의 플랫폼에서 제공하며 운영자가 안정적으로 서비스를 관리할 수 있도록 돕습니다. 이를 통해 운영자는 서비스 품질과 가용성을 지속적으로 유지할 수 있고, 예기치 못한 장애나 보안 위협에 대해서도 선제적으로 대응할 수 있습니다. 결국 Zenius SMS는 Docker 기반 컨테이너 환경뿐 아니라 현대적인 IT 인프라 전반의 안정성과 효율성을 높이는 데 필수적인 도구로 자리매김하고 있습니다.
2025.08.20
기술이야기
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
기술이야기
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
최근 IT 인프라는 과거보다 훨씬 복잡하고 빠르게 변화하고 있습니다. 예전에는 서버, 네트워크 장비, 데이터베이스, 몇 가지 핵심 애플리케이션만 관리하면 되었지만, 이제는 VMware·Hyper-V 같은 가상화 플랫폼과 Kubernetes 기반의 컨테이너 환경이 기본이 되었고, AWS·Azure·NCP 등 퍼블릭 클라우드까지 결합되며 온프레미스와 클라우드가 혼합된 하이브리드 클라우드 환경이 일반화되었습니다. 이처럼 다양한 요소로 구성된 인프라를 개별 도구로 관리하면, 장애 발생 시 원인 파악과 해결에 많은 시간과 노력이 필요합니다. 운영자는 수많은 로그와 모니터링 화면을 오가며 원인을 추적해야 하고, 복구 역시 수작업에 의존하는 경우가 많습니다. 작은 장애 하나도 전체 서비스 가용성에 영향을 미칠 수 있는 환경에서, 통합적이고 지능적인 IT 인프라 관리 체계가 꼭 필요합니다. 브레인즈컴퍼니의 Zenius EMS는 이러한 복잡한 환경에서 안정성과 효율성을 동시에 확보할 수 있도록 설계된 통합 IT 인프라 관리 솔루션입니다. 서버, 네트워크, 데이터베이스, 애플리케이션, 가상화, 컨테이너, 클라우드를 한 화면에서 관리할 수 있으며, AI·SIEM·OAM 등 다양한 모듈을 연계하면 운영 자동화, 예측 분석, 보안, 규제 준수까지 한 번에 대응할 수 있습니다. 이제, Zenius EMS로 IT 인프라를 통합 관리해야 하는 네 가지 핵심 이유를 살펴보겠습니다. 1. 모든 IT 인프라를 아우르는 진정한 통합 모니터링 기업의 IT 환경은 온프레미스 서버, 스토리지, 네트워크 장비, 데이터베이스, 애플리케이션을 비롯해 가상화와 컨테이너, 퍼블릭 클라우드까지 다층적으로 구성됩니다. 이렇게 다양한 구성 요소가 혼재된 환경에서는 개별 도구만으로 전체 상태를 파악하기 어렵고, 장애 발생 시 원인 분석에 많은 시간이 소요됩니다. 예를 들어 웹 애플리케이션의 응답이 느려지면, 서버의 CPU·메모리, 네트워크 트래픽, 데이터베이스 세션, 컨테이너 Pod 상태를 각각 확인해야 하며, 이 과정에서 근본 원인 파악이 늦어질 수 있습니다. Zenius EMS는 이러한 복잡한 환경을 단일 플랫폼에서 완전히 통합해 관리할 수 있도록 설계되었습니다. 단순히 서버와 네트워크 상태를 나열하는 수준이 아니라, 모든 인프라 데이터를 연관 관계 기반으로 실시간 시각화합니다. 토폴로지 맵과 서비스 맵은 각 구성 요소 간의 연결 상태와 서비스 흐름을 직관적으로 보여주어, 장애나 성능 저하가 발생했을 때 어느 구간에서 문제가 시작되었는지를 빠르게 파악할 수 있습니다. 또한 다차원 대시보드와 Top N 현황을 통해 자원 사용률, 트래픽, 세션 수, 이벤트 발생 빈도 같은 핵심 지표를 종합적으로 살펴볼 수 있습니다. [ Zenius EMS 솔루션 예시화면_ 대시보드/오버뷰 구성 ] 이를 통해 운영자는 한 화면에서 전체 인프라의 상태와 성능을 동시에 확인할 수 있으며, 필요한 경우 특정 서비스나 장비까지 드릴다운하여 상세 정보를 확인할 수 있습니다. 예를 들어 웹 서비스 응답 지연이 발생하면, 대시보드에서 서버 부하, 네트워크 트래픽, DB 세션, 컨테이너 Pod 상태까지 유기적으로 연결된 데이터를 기반으로 근본 원인을 신속하게 도출할 수 있습니다. 이처럼 통합 관제 환경이 제공하는 가장 큰 장점은 운영 효율성의 향상입니다. 더 이상 여러 모니터링 도구를 전환하며 데이터를 수집하고 조합할 필요가 없고, 이벤트 발생과 분석, 원인 파악, 대응까지의 시간이 크게 단축됩니다. 2. 장애 예방과 신속한 대응 지원 Zenius EMS는 IT 인프라 운영에서 중요한 과제인 장애 예방과 신속한 대응을 위해 설계되었습니다. AI 모듈과 연계해 서버, 네트워크, 데이터베이스, 컨테이너 등에서 발생하는 성능 지표를 분석하며, CPU·메모리 사용률, 네트워크 트래픽, DB 세션 등 핵심 지표를 기반으로 병목이나 이상 징후를 사전에 감지합니다. 또한 임계치에 도달하기 전 알림을 제공해 운영자가 미리 조치를 준비할 수 있어 서비스 중단 위험을 크게 줄일 수 있습니다. [ Zenius EMS 솔루션 예시화면_ AI 연계 ] Zenius EMS는 인프라 전반에서 발생하는 이벤트를 실시간으로 수집·연계해 비정상 패턴을 탐지하며, 문제 발생 시 통합 대시보드와 서비스 맵을 통해 상태 변화를 직관적으로 확인할 수 있습니다. 장애가 실제로 발생하면 OAM(운영 자동화) 모듈과 연계해 탐지부터 복구, 정상화 확인, 결과 통보까지 전 과정을 자동화하고, 모든 조치 이력은 기록으로 남아 추후 분석과 정책 개선에 활용됩니다. 또한 SIEM 모듈과 함께 사용하면 로그 수집·저장·분석·시각화를 한 곳에서 처리해 서비스 이상 징후를 보다 정밀하게 파악할 수 있으며, 장애 재발 방지와 사후 분석에도 효과적입니다. 이렇게 Zenius EMS는 사전 예방과 신속 대응을 하나의 체계로 연결하여 운영자는 반복적인 긴급 대응에서 벗어나 전략적 운영에 집중할 수 있고, 기업은 서비스 가용성과 안정성을 높이며 운영 효율성까지 함께 확보할 수 있습니다. 3. 대규모·클라우드 환경에서도 안정적인 확장성과 성능 대규모 환경과 멀티 클라우드 아키텍처에서는 서버, 네트워크, 데이터베이스, 가상화, 컨테이너, 클라우드 리소스를 동시에 안정적으로 관리할 수 있는 능력이 필요합니다. 관리 범위가 넓어질수록 이벤트 발생량과 성능 데이터의 양은 급격히 증가하며, 이를 제때 수집하고 분석하지 못하면 장애 징후를 놓치거나 대응이 늦어질 수 있습니다. Zenius EMS는 이러한 환경을 안정적으로 운영할 수 있도록 설계되었습니다. 다양한 인프라에서 발생하는 이벤트와 성능 지표를 실시간으로 수집하고, 이를 기반으로 상태 변화를 빠르게 감지합니다. CPU·메모리·스토리지 사용률, 네트워크 트래픽, 세션 수 등 주요 지표를 통합 대시보드에서 한눈에 확인할 수 있어, 대규모 환경에서도 일관된 관제 체계를 유지할 수 있습니다. 또한 SIEM 모듈과 연계하면 대용량 로그까지 함께 수집·분석할 수 있어, 방대한 환경에서도 통합 모니터링과 실시간 관제를 강화할 수 있습니다. [ Zenius EMS 솔루션 예시화면_ K8s] Zenius EMS는 컨테이너와 멀티 클라우드 환경에도 최적화되어 있습니다. Docker와 Kubernetes 기반 환경에서는 Pod, Node, Container 단위까지 세밀하게 모니터링할 수 있으며, AWS·Azure·NCP 같은 퍼블릭 클라우드와 온프레미스를 유기적으로 연결해 하이브리드 환경 전반을 일관성 있게 관리할 수 있습니다. 이와 같은 구조를 통해 Zenius EMS는 서버 수가 많고 복잡도가 높은 환경에서도 안정적인 서비스 운영을 지원합니다. 운영자는 인프라 전반의 상태를 명확하게 파악하고, 문제 발생 시 빠르게 대응할 수 있어 서비스 가용성과 안정성을 유지할 수 있습니다. 4. 보안·컴플라이언스까지 통합 지원하는 플랫폼 Zenius EMS는 운영 효율화를 넘어 보안과 규제 준수까지 한 번에 대응할 수 있는 통합 플랫폼입니다. 서버와 네트워크 장비의 보안 취약점은 SMS·NMS·GPM 모듈과 연계해 행정안전부 권고 기준으로 자동 점검하며, 점검 결과를 기반으로 한 보안 조치 가이드도 제공합니다. 이를 통해 운영자는 복잡한 점검 업무를 간소화하고, 인프라 전반의 보안 수준을 체계적으로 유지할 수 있습니다. 접근 제어와 감사 기능 역시 강화되어 있습니다. 비인가 사용자의 접근은 IP·기간·시간 단위로 제한할 수 있으며, 금지 명령어 실행을 차단하고, 모든 세션 수행 이력을 녹화해 감사 추적이 가능합니다. 공공기관이나 금융권처럼 높은 수준의 보안이 요구되는 환경에서도 안정적으로 운영할 수 있는 이유입니다. 또한 SIEM 모듈을 통해 로그 수집·저장·분석·시각화를 일원화하고, Zenius AI 모듈과 결합하면 잠재적 보안 위협과 서비스 이상 징후를 사전에 식별할 수 있습니다. 모니터링, 보안, 규제 준수를 통합적으로 제공하는 Zenius EMS는 IT 운영 리스크를 최소화하고, 기업의 IT 거버넌스를 한 단계 높여줍니다. [ Zenius EMS 솔루션 예시화면_ DBMS ] Zenius EMS 솔루션은 국내외 약 1,500여 고객사에서 활용되고 있으며, 공공기관, 금융권, 의료기관, 대기업, 국방, 해외 사업장 등 다양한 환경에서 안정성과 확장성을 이미 검증받았습니다. 하이브리드와 멀티 클라우드가 혼재된 복잡한 인프라에서도 예측 가능한 운영과 높은 효율성, 그리고 보안 신뢰성을 확보해 서비스 품질을 안정적으로 유지할 수 있습니다. 이러한 검증된 경험과 성능을 기반으로 Zenius EMS는 운영자에게는 일관되고 편리한 관리 환경을, 기업에는 안정성과 경쟁력을 제공하며, 현재도 여러 산업 현장에서 안정적인 IT 인프라 운영을 지원하고 있습니다.
2025.08.07
기술이야기
APM 솔루션을 통한 구체적인 WAS 모니터링 가이드
기술이야기
APM 솔루션을 통한 구체적인 WAS 모니터링 가이드
WAS 환경에서 서비스를 운영하다 보면, 특정 시간대에 간헐적인 응답 지연, 트랜잭션 실패, 일시적인 서비스 불안정 등이 반복적으로 발생하는 경우가 많습니다. 문제는 이런 현상이 일정한 패턴 없이 나타날 때, 운영자가 단순한 모니터링 지표나 로그만으로는 정확한 원인을 파악하기 어렵다는 점입니다. 많은 운영자들이 CPU, TPS, 에러율 등 다양한 지표를 교차해서 살펴보지만, 실제로 "어떤 요청이 지연됐는지", "어떤 지점에서 병목이 생겼는지"를 끝내 확인하지 못하고 넘어가는 사례도 적지 않습니다. 결국 표면적인 수치만 보고 넘어갈 경우, 반복적인 문제에 대한 근본적인 해결책을 놓치게 됩니다. 이러한 운영 현실을 반영해, Zenius APM은 단순 지표 조회를 넘어 트랜잭션의 흐름을 따라가며 실제 문제를 찾아낼 수 있는 ‘주제별 분석’과 ‘Snapshot 분석’ 기능을 제공합니다. 이 두 가지 기능은 문제 발생 시점의 트랜잭션을 시각적으로 확인하고, 응답 지연의 원인을 한눈에 파악하는 데 효과적입니다. APM솔루션 Zenius APM을 통해 WAS를 효과적으로 모니터링하는 방법을 자세히 알아보겠습니다. 주제별 분석 – 문제 구간을 빠르게 좁혀가는 첫 단계 Zenius APM의 주제별 분석은 ‘APM > 분석 > 주제별 분석 > Issue’ 메뉴에서 시작됩니다. 운영자는 여기서 분석할 기간(예: 1일, 7일, 30일 등)과 대상 인스턴스(WAS 서버)를 선택할 수 있으며, 다수의 인스턴스를 동시에 지정하여 서비스 전체의 상태를 통합적으로 분석할 수도 있습니다. Zenius는 이 범위 내에서 수집된 트랜잭션 중 응답 지연, 예외 발생, 오류 응답 등 정상 범위를 벗어난 트랜잭션을 자동 탐지하고, 이슈 유형별로 정리해 보여줍니다. 이 덕분에 운영자는 로그를 일일이 검색하지 않아도, 문제 발생 구간과 주요 원인 유형을 한눈에 파악할 수 있습니다. 또한, 특정 애플리케이션이나 서버만 선택해서 보거나, 이슈 발생 시간대별로 정렬해보는 것도 가능하므로, 분석 범위를 점차 좁혀가며 원인 추적을 진행하기에 매우 유용합니다. 이 기능은 단지 이슈를 보여주는 데 그치지 않고, 다음 단계의 트랜잭션 분석이나 흐름 확인을 위한 기준점 역할을 합니다. Stack Trace 기반 흐름 분석 – 병목 지점을 구체적으로 확인 Zenius APM의 주제별 분석 화면에서 이슈 리스트를 클릭하면, 해당 트랜잭션에 대한 상세 분석 화면으로 진입할 수 있습니다. 이 화면에서는 단순히 에러가 발생했다는 사실을 넘어서, 트랜잭션의 흐름과 그 안에서 어떤 지점에서 문제가 발생했는지를 구체적으로 추적할 수 있는 정보들이 제공됩니다. 우선, 상단에서는 이슈 유형, 발생 시각, 애플리케이션 이름, 에러 메시지 등의 기본 정보가 정리되어 있어 문제가 언제, 어디에서, 어떤 유형으로 발생했는지를 빠르게 확인할 수 있습니다. 여기에 더해, Zenius는 각 트랜잭션이 어떤 호출 흐름을 거쳐 처리되었는지에 대한 Stack Trace 정보를 함께 제공합니다. 이 Stack Trace는 단순한 로그 텍스트가 아닌, 각 함수 호출 및 내부 모듈 간 처리 관계가 시각화된 형태로 제공되며, 각 단계별로 소요된 시간도 함께 확인할 수 있습니다. 이를 통해 전체 요청 중 어떤 구간에서 응답 지연이 발생했는지, DB 호출이나 외부 연동에서 병목이 있었는지를 직관적으로 파악할 수 있습니다. 특히 우측 상단에 위치한 ‘트랜잭션 상세보기’ 아이콘을 클릭하면, 해당 트랜잭션에 대한 더 구체적인 흐름 분석 화면으로 전환됩니다. 이 화면에서는 클라이언트 IP, 요청 경로, 호출 계층 구조, HTTP 상태 코드 등 네트워크 및 애플리케이션 관점의 주요 진단 정보를 모두 확인할 수 있어, 지연의 원인이 프론트엔드-백엔드-DB 중 어디에 있었는지를 명확하게 구분할 수 있습니다. 이러한 분석 방식은 단순히 응답 시간이 늘어났다는 결과만 보여주는 것이 아니라, 문제 발생의 맥락을 따라가며 원인을 추적할 수 있는 구조를 제공합니다. 기존 모니터링 도구에서는 트랜잭션의 처리 흐름을 별도로 조합해야 했다면, Zenius는 하나의 화면에서 모든 흐름을 자연스럽게 보여주기 때문에 운영자의 분석 부담을 크게 줄여줍니다. 애플리케이션 단위 흐름 파악 – 전체 상태를 한눈에 정리 트랜잭션 단위 분석만으로는 전체 시스템의 상태 흐름을 파악하는 데 한계가 있습니다. 특히 여러 서비스가 동시에 운영되는 환경에서는, 특정 애플리케이션의 호출 집중 시점, 실패율 변화, 응답 지연 구간 등을 종합적으로 분석해야 원인을 정확히 진단할 수 있습니다. Zenius APM은 이를 위해 ‘APM > 분석 > 주제별분석 > 어플리케이션’ 탭을 제공합니다. 이 화면에서는 운영 중인 각 애플리케이션에 대한 호출 수, 실패 수, 평균 응답 시간의 시계열 변화를 한눈에 확인할 수 있습니다. 뿐만 아니라, 화면 하단에서는 다음과 같은 분석 항목이 추가로 제공됩니다: - SQL 실행 패턴: 쿼리 호출량, 응답 시간, 반복 실행 여부 등 - 이슈 발생 현황: 에러 빈도, 처리 실패 패턴 - 일별/시간별 현황 차트: 특정 시간대에 집중된 요청, 급증 구간 탐지 - 응답 분포 차트: 지연 구간의 비정상 요청 탐색 이러한 시각적 분석을 통해 운영자는 “어떤 시간대에 요청이 몰렸는지”, “응답이 지연되기 시작한 시점이 언제인지”, “반복적인 병목 쿼리가 있는지” 등을 입체적으로 파악할 수 있습니다. 특히, Zenius APM은 단일 화면 내 탭 전환만으로 주요 데이터를 연계 분석할 수 있어, 운영자는 화면을 전환하거나 복잡한 조건을 따로 설정하지 않고도 전체 흐름을 집중도 있게 파악할 수 있습니다. Snapshot 분석 – 문제 발생 시점의 상태를 다시 확인하는 방법 서비스 운영 중 반복적으로 발생하는 응답 지연이나 트랜잭션 병목 문제는, 대부분 특정 시점에 집중되어 나타나는 경우가 많습니다. 하지만 문제가 실제로 발생한 그 ‘시점’의 시스템 상태를 정확히 기억하고 분석하는 것은 쉽지 않습니다. 특히 로그나 지표만으로는 당시 상황을 온전히 재현하기 어렵습니다. Zenius APM의 Snapshot 분석은 이러한 문제를 해결하기 위한 기능입니다. 이는 단순한 트랜잭션 저장이나 이력 조회를 넘어, 특정 시점의 트랜잭션 흐름, 요청량 변화, 응답 분포, 시스템 자원 사용 상태를 그대로 복원하여 보여줍니다. 운영자는 ‘APM > 분석 > Snapshot’ 분석 메뉴를 통해 분석이 필요한 시점을 선택하고, 해당 시간대에 수집된 트랜잭션 전체의 흐름을 다시 재현할 수 있습니다. 특히 응답 시간의 분포까지 시각적으로 함께 제공되기 때문에, 병목이나 실패가 시작된 구간을 한눈에 식별할 수 있습니다. 예를 들어, 매일 새벽 1시경 특정 서버에서 트랜잭션 수가 급증하면서 응답 지연이 발생하는 문제가 반복된다면, 운영자는 다음과 같은 항목을 Snapshot을 통해 명확히 분석할 수 있습니다: - 어떤 서비스 또는 애플리케이션에서 요청이 집중되었는지 - 세션 수, 응답 지연 시간, 트랜잭션 실패 건수의 변화 추이 - Stack Trace에서 어떤 호출 구간부터 처리 지연이 발생했는지 이와 더불어 Zenius는 Snapshot 데이터를 현재 실시간 대시보드와 병렬로 띄워 비교 분석할 수 있도록 지원합니다. 이를 통해 단순히 과거 상황을 재확인하는 것을 넘어, 문제 발생 전후의 시스템 차이를 입체적으로 파악하고, 재발 방지를 위한 운영 전략을 세우는 기반으로 활용할 수 있습니다. 구체적인 활용 가이드 Zenius APM은 운영 중 발생하는 애플리케이션의 속도 저하, 비정상 동작 등의 문제를 실시간으로 감지하고, 이에 대한 신속한 원인 분석을 지원합니다. 특히, 특정 시간대에 반복적으로 발생하는 이슈에 대해서는 해당 시점의 Snapshot을 재현함으로써, 문제의 흐름과 원인을 보다 정밀하게 진단할 수 있습니다. 이러한 분석은 ‘APM > 분석 > 주제별 분석 > Issue 메뉴’에서 시작됩니다. 먼저, 이슈 분석을 수행해 트랜잭션 지연, 오류, 예외와 같은 이상 패턴을 확인합니다. 이때, 조회 기준을 ‘Issue 유형’이 아닌 ‘대상 기준’으로 선택하면, 여러 인스턴스를 동시에 조회하여 각 인스턴스의 상태를 손쉽게 비교하고 분류할 수 있습니다. 이를 통해 매번 인스턴스별로 별도의 분석을 수행하지 않아도 되며, 다수의 WAS 서버나 노드가 구성된 환경에서도 통합적이고 효율적인 문제 탐색이 가능합니다. 분석 결과는 이슈 유형별로 정리되어, 문제의 집중 발생 시간대 및 영향을 받는 서비스 범위를 빠르게 파악할 수 있게 해줍니다. 분석 결과를 통해 이슈가 발생한 애플리케이션이 식별되면, ‘어플리케이션’ 탭으로 이동하여 해당 애플리케이션의 상태를 보다 심층적으로 확인할 수 있습니다. 이 탭에서는 호출량, 응답 시간, 실패 건수 등의 지표를 시간대별로 시각화해 보여주며, SQL 실행 패턴 및 응답 분포 차트까지 함께 제공되어 애플리케이션의 처리 흐름과 병목 구간을 정밀하게 파악할 수 있습니다. 어플리케이션의 호출 건수, 실패 건수, 응답 시간 등의 지표를 종합적으로 분석하면, 해당 애플리케이션의 현재 동작 상태를 명확하게 파악할 수 있습니다. 이러한 지표는 단일 트랜잭션 분석만으로는 알기 어려운, 서비스 전반의 처리 안정성이나 성능 이상 징후를 조기에 감지하는 데 유용합니다. 앞선 이슈 분석 화면에서는 이슈의 유형, 영향을 받은 애플리케이션, 연관된 트랜잭션 정보 등을 함께 확인할 수 있으며, 이를 기반으로 보다 정밀한 원인 추적이 가능합니다.특정 이슈 항목을 확인한 후에는 ‘일별/시간별 현황’ 탭으로 이동하여, 해당 문제가 어느 시간대에 집중적으로 발생했는지, 또는 지속적으로 반복되고 있는지를 시계열 기반으로 확인할 수 있습니다. 예를 들어, 위 화면에서 01시 시간대에 이슈가 가장 집중적으로 발생한 것을 확인할 수 있습니다. 이처럼 특정 시간대에 반복적으로 문제가 발생하는 양상이 보인다면, 해당 시점에 동일한 유형의 이슈가 재발될 가능성이 높다고 판단할 수 있습니다. 이에 따라 운영자는 해당 시간대의 Snapshot 분석을 실행해, 당시의 트랜잭션 흐름과 자원 사용 현황 등을 복원하고, 대상 인스턴스의 실제 상태를 보다 구체적으로 확인할 수 있습니다. Snapshot 분석을 통해 해당 시점의 접속자 수, 요청 건수, CPU·메모리 등 리소스 사용 현황을 종합적으로 확인할 수 있으며, 응답 분포 차트를 기반으로 성능 저하가 발생한 구간의 Stack Trace 정보와 관련 이슈 내역을 함께 분석할 수 있습니다. 또한 ‘새창에서 분석’ 기능을 활용하면 Snapshot 분석 결과를 별도의 창에서 확인할 수 있어, 현재의 실시간 대시보드와 병렬로 비교 분석이 가능합니다. 이를 통해 과거 특정 시점의 시스템 상태와 현재 상태를 정밀하게 대조할 수 있으며, 지속적인 성능 저하 여부나 개선 효과를 직관적으로 판단할 수 있습니다. 문제가 발생했을 때 단순히 지표를 보는 것만으로는 원인을 정확히 파악하기 어렵습니다. Zenius APM은 이슈 발생 구간을 중심으로 흐름을 따라가며, 트랜잭션 단위에서 실제 병목 지점을 시각적으로 확인할 수 있게 해줍니다. 덕분에 운영자는 반복되는 문제의 흐름을 놓치지 않고, 빠르게 대응할 수 있습니다. 운영 현장에서 ‘왜 문제가 생겼는가’를 정확히 알고 싶은 분들에게 꼭 필요한 솔루션입니다.
2025.08.01
기술이야기
트래픽 관리 솔루션, Zenius TMS의 주요기능과 특장점
기술이야기
트래픽 관리 솔루션, Zenius TMS의 주요기능과 특장점
복잡한 네트워크 인프라 환경에서 안정적으로 서비스를 운영하려면 실시간 트래픽 모니터링과 정확한 성능 분석이 필요합니다. 특히 네트워크 장비가 다양해지고 데이터 흐름이 복잡해지면서 여러 장비에서 발생하는 트래픽을 한눈에 파악할 수 있는 통합 관리 체계가 점점 중요해지고 있습니다. 트래픽 데이터를 체계적으로 수집하고 직관적으로 시각화하면, 이상 징후를 빠르게 찾아 대응할 수 있어 기업과 공공기관의 네트워크 관리 효율성을 높일 수 있습니다. 이러한 필요성에 맞춰 브레인즈컴퍼니는 Zenius TMS를 통해 다양한 장비에서 발생하는 트래픽 데이터를 통합적으로 관리할 수 있는 환경을 제공하고 있습니다. Zenius TMS는 실시간으로 데이터를 수집하고 시각화할 뿐만 아니라, 장애 상황이나 성능 저하와 같은 이상 징후를 신속하게 탐지하고 상세히 분석할 수 있도록 지원합니다. 지금부터 Zenius TMS가 제공하는 구체적인 기능과 주요 장점을 보다 자세히 알아보겠습니다. 트래픽 관리 솔루션, Zenius TMS의 5가지 주요 기능 최근 네트워크 환경은 다양한 장비가 혼재하고, 외부 공격의 위험성 또한 점점 증가하면서, 단편적인 관리 방식으로는 충분한 대응이 어려운 상황입니다. 트래픽 관리 솔루션, Zenius TMS는 이와 같은 변화와 요구사항에 맞춰, 단일 플랫폼에서 트래픽의 수집부터 시각화, 정밀 분석, 이상 징후 탐지와 장애 대응까지 효과적으로 지원할 수 있도록 설계된 솔루션입니다. Zenius TMS의 주요 기능을 5가지로 나누어 하나씩 자세히 살펴보겠습니다. [1] 실시간 트래픽 모니터링 및 시각화 기능 Zenius TMS는 다양한 네트워크 장비에서 발생하는 트래픽 데이터를 실시간으로 수집하여, 직관적이고 이해하기 쉬운 방식으로 시각화하는 기능을 제공합니다. 네트워크 관리자는 복잡한 구성이나 사전 지식 없이 HTML5 기반의 웹 UI를 통해 현재 네트워크의 전체적인 상태를 빠르게 파악할 수 있습니다. 구체적으로 특정 시간대나 특정 구간에서 트래픽 사용량이 급증하는 IP, 포트, 어플리케이션을 Top-N 형태로 즉각적으로 표시해, 문제의 우선순위를 빠르게 판단할 수 있도록 합니다. 송수신 bps/pps(초당 비트/패킷 수), Byte/Packet과 같은 세부적인 트래픽 지표 역시 장비 및 인터페이스 단위로 명확히 제공되어, 운영자가 네트워크 병목 현상이나 이상 트래픽 흐름을 신속하게 탐지할 수 있도록 돕습니다. 특히 IP 주소를 사용자명이나 서버명과 연계하여 표시하는 기능을 통해, 관리자가 추상적인 숫자가 아니라 구체적인 트래픽 유발 주체를 손쉽게 인지하고 문제의 근본 원인을 빠르게 분석할 수 있도록 지원합니다. [2] 성능 분석 및 Drill Down 기능 효과적인 네트워크 관리는 단순히 트래픽 현황을 모니터링하는 것에서 한 단계 나아가, 트래픽 증가의 원인과 맥락을 정확히 이해하는 데 달려 있습니다. Zenius TMS는 이를 위해 강력한 성능 분석 및 Drill Down 기능을 제공합니다. 트래픽 분석 기준은 IP, 어플리케이션, 프로토콜, 포트, QoS 등 다양한 카테고리로 구성되며, 각 카테고리별로 트래픽 점유율 Top-N 데이터를 한눈에 볼 수 있도록 시각화합니다. 특정 IP 주소를 중심으로 어떤 출발지 및 목적지와 주로 연결되는지, 사용된 포트와 어플리케이션 종류는 무엇인지 등을 다차원적으로 분석할 수 있으며, 이를 통해 관리자는 트래픽이 증가한 이유와 그 영향 범위를 명확히 이해할 수 있습니다. 또한, Drill Down 방식을 통해 전체 트래픽 데이터에서 상세한 항목으로 심층 분석이 가능하여, 트래픽 병목 현상의 원인과 특정 서비스나 구간에 집중된 비정상적 트래픽 패턴까지 정밀히 진단할 수 있습니다. [3] 유해 트래픽 탐지 및 패턴 기반 분석 기능 기업과 공공기관의 네트워크는 외부 공격이나 내부에서 발생하는 비인가 트래픽 같은 다양한 보안 위협에 항상 노출되어 있습니다. Zenius TMS는 네트워크 보안 강화를 위해 다양한 유해 트래픽 탐지 및 분석 기능을 내장하고 있습니다. TCP SYN Flood, UDP Flood와 같은 일반적인 공격 유형을 자동으로 감지하고, 공격의 근원지와 피해 대상을 매트릭스 형태로 직관적으로 표시하여 관리자가 신속하게 문제 상황을 파악할 수 있도록 합니다. 사용자는 공격이 집중된 IP, 공격이 이루어진 시점과 지속 시간, 공격 유형별 빈도 등 세부적인 데이터를 통해 즉각적인 방어 전략 수립은 물론 장기적인 보안 정책 개선을 위한 구체적 인사이트도 얻을 수 있습니다. 더 나아가 일정 기간 축적된 유해 트래픽 패턴 분석 결과를 기반으로 조직 내 보안 대응책이 실제로 잘 작동하는지 객관적으로 평가할 수 있습니다. [4] 장애 감지 및 다단계 통보 기능 네트워크 환경에서는 트래픽 장애나 성능 저하와 같은 문제가 빈번히 발생할 수 있으며, 이때 얼마나 신속히 대응하느냐가 운영 안정성에 큰 영향을 미칩니다. Zenius TMS는 사전에 설정된 트래픽 임계값을 기준으로 장애나 이상 상황을 실시간으로 탐지하며, 설정된 알림 채널을 통해 문제를 즉시 통보합니다. 관리자는 IP 단위 혹은 IP 그룹 단위로 장애감시 정책을 세분화하여 설정할 수 있으며, 서비스 유형(HTTP, HTTPS, FTP, DNS 등)에 따라 감시 템플릿을 미리 구성해 보다 체계적으로 관리할 수 있습니다. 트래픽 장애가 감지되면 SMS, 이메일, 푸시 알림 등 다단계 통보 방식이 활성화되어, 문제의 심각성이나 지속 기간에 따라 차등적으로 경고 메시지를 전송합니다. 이는 관리자가 즉각적인 조치를 취할 수 있도록 돕는 동시에, 장애 이력 및 상세 이벤트 로그를 자동 기록하여 추후 장애 재발 방지를 위한 근거 자료로 활용될 수 있습니다. [5] 운영관리 자동화 및 보고서 생성 기능 지속적으로 증가하는 네트워크 규모와 복잡성 속에서 효율적인 운영 관리를 위해서는 반복적이고 수작업이 많은 업무를 자동화하는 것이 필요합니다. Zenius TMS는 이를 고려해, 트래픽 데이터를 수집하는 대상 장비와 인터페이스 정보를 자동으로 탐색하여 등록하는 기능을 지원합니다. 장비 추가나 변경 시 설정 절차가 간편해지면서 관리자는 네트워크 환경 변화에 빠르게 대응할 수 있습니다. IP 자원 관리를 위해서는 B Class, C Class 등 IP 그룹 단위 설정 및 개별 IP 직접 입력 방식이 제공되어, 조직의 실제 운영 환경에 맞는 관리 체계를 쉽게 구축할 수 있습니다. 또한 각 IP 주소에 사용자 정보를 연계하여 트래픽 데이터와 사용자 간의 명확한 연결성을 확보할 수 있어, 트래픽 데이터를 보다 효율적이고 의미 있게 관리할 수 있습니다. 트래픽 모니터링 데이터를 기반으로 보고서를 손쉽게 생성할 수 있는 기능도 중요한 장점입니다. 관리자는 원하는 분석 기간과 보고서 유형을 간단히 선택하여 Excel 형태로 보고서를 출력할 수 있으며, 성능 지표, 트래픽 변화 추이 등 핵심 지표들이 명확히 정리되어 네트워크 운영 성과 보고나 자원 증설 계획, 운영 효율 개선 전략 수립 등의 다양한 업무에 즉시 활용 가능합니다. 트래픽 관리 솔루션, Zenius TMS의 주요 기능 특장점 Zenius TMS는 단순히 트래픽을 보여주는 모니터링 도구를 넘어, 네트워크 운영 환경에서 실제 발생하는 다양한 트래픽 흐름을 체계적으로 관리하고 능동적으로 대응할 수 있게 지원하는 솔루션입니다. 설치 및 초기 구축이 빠르고 간편하며, 도입 단계부터 기술 지원과 사용자 교육이 함께 제공되어 관리자의 도입 부담을 크게 덜어줍니다. 사용자 인터페이스(UI)는 현장 운영자의 실무 관점에서 설계되어, 복잡한 설정 없이 필요한 트래픽 정보를 빠르고 직관적으로 파악할 수 있도록 간결하게 구성되어 있습니다. HTML5 기반의 웹 인터페이스는 별도의 클라이언트 프로그램 설치 없이 브라우저 환경에서 즉시 사용할 수 있으며, 실시간으로 변화하는 트래픽 현황을 시각적인 그래프나 차트 등을 통해 명확히 제공합니다. 또한 IP와 사용자명 또는 서버명을 매핑하여 직관적으로 표시함으로써, 운영자가 데이터를 보다 의미 있는 형태로 쉽게 이해하고 신속히 대응할 수 있도록 돕습니다. Zenius TMS의 또 다른 강점은 EMS 통합 플랫폼 기반의 아키텍처를 통해 네트워크뿐만 아니라 서버, 애플리케이션, 데이터베이스 등 전체 인프라를 종합적으로 관리할 수 있다는 점입니다. SMS, NMS, ITSM 등 다른 인프라 관리 시스템과도 쉽게 연동되어, 하나의 플랫폼에서 다양한 운영 정보를 통합적으로 수집하고 관리할 수 있습니다. 이러한 유연한 통합 구조는 운영 환경이 지속적으로 변화하는 기업이나 기관에 특히 유리하며, 장기적으로 관리 효율성을 높이고 확장성을 확보하는 데에도 큰 이점을 제공합니다. Zenius TMS 공공기관, 금융권, 의료기관, 제조업 등 폭넓은 산업 분야에서 1,000건 이상의 풍부한 구축 경험과 실제 운영 사례를 통해 그 성능과 안정성을 검증 받았습니다. 또한 GS 인증 1등급 획득, 조달청 우수제품 지정 등 엄격한 공공 부문 요구 사항을 충족하는 신뢰성까지 갖추고 있어, 까다로운 운영 환경에서도 충분히 안정적인 성능을 발휘합니다. 이처럼 Zenius TMS는 네트워크 관리에 요구되는 효율성, 확장성, 직관적인 사용자 환경, 그리고 안정성이라는 필수 요소를 두루 갖추고 있으며, 복잡한 네트워크 환경에서 신속하고 정확한 운영 관리를 원하는 기업과 공공기관에 가장 적합한 솔루션입니다. 네트워크 트래픽을 안정적으로 관리하고자 하는 기업이나 기관이라면, Zenius TMS를 통해 한 단계 더 효율적이고 신뢰할 수 있는 네트워크 운영 환경을 경험해 보시기 바랍니다.
2025.07.24
기술이야기
리눅스 서버 TCP 세션 상태, 제니우스(Zenius) SMS로 정밀하게 모니터링하기
기술이야기
리눅스 서버 TCP 세션 상태, 제니우스(Zenius) SMS로 정밀하게 모니터링하기
리눅스 서버를 운영하다 보면, 어느 순간 접속이 느려지거나 예기치 않게 서비스가 불안정해지는 상황을 마주하게 됩니다. 이런 문제가 발생했을 때, 운영자가 가장 먼저 점검해야 할 항목 중 하나가 바로 TCP 세션 상태입니다. ESTABLISHED, CLOSE_WAIT, TIME_WAIT 같은 세션 상태는 단순한 연결 여부만을 보여주는 것이 아니라, 애플리케이션의 처리 흐름, 외부의 비정상적인 접근 시도, 포트 자원 고갈 등 다양한 시스템 이상 징후를 담고 있습니다. 이런 세션 정보를 파악하기 위해 일반적으로는 netstat이나 ss 같은 명령어를 사용합니다. 하지만 수많은 연결 중에서 문제가 되는 세션을 빠르게 식별하기는 어렵고, 시간 흐름에 따른 변화나 포트별 집중 현상까지 함께 분석하려면 복잡한 수작업이 필요합니다. 특히 여러 서버를 동시에 운영하거나 실시간 대응이 필요한 환경에서는 이 같은 방식만으로는 한계가 명확합니다. Zenius SMS이러한 문제점을 해결해주는 기능을 갖추고 있습니다. Zenius는 리눅스 서버의 TCP 세션 상태를 실시간으로 수집하고, 상태별로 자동 분류해 시각적으로 보여줍니다. 운영자는 별도의 명령어 입력 없이도 단일 화면에서 전체 세션 현황을 한눈에 파악할 수 있으며, 세션 수 급증, 포트 집중, 세션 누수, 외부 접속 이상 등 문제 징후를 빠르고 정확하게 진단할 수 있습니다. 제니우스(Zenius) SMS를 활용해 리눅스 서버의 TCP 세션 상태를 어떻게 정밀하게 모니터링할 수 있는지, 그리고 이를 통해 운영 안정성과 대응 효율성을 어떻게 높일 수 있는지 자세히 살펴보겠습니다. Zenius에서 리눅스 TCP 세션 상태를 모니터링하는 절차 Zenius SMS에서는 리눅스 서버의 TCP 세션 상태를 실시간으로 수집하고 시각화하여, 운영자가 문제 징후를 직관적으로 파악할 수 있도록 지원합니다. 이를 위해 Zenius는 세션 상태 정보를 단계적으로 탐색할 수 있는 기능을 제공합니다. 전체 흐름은 다음과 같이 네 단계로 구성됩니다. 첫 번째 단계는 모니터링 대상 서버를 선택하는 과정입니다. [SMS > 모니터링] 경로로 진입하면 관리 중인 서버 목록이 표시되며, 이 중에서 세션 상태를 분석할 서버를 선택할 수 있습니다. 이는 분석 범위를 좁히고, 특정 인스턴스에 집중할 수 있도록 돕습니다. 두 번째 단계는 ‘TCP 상태’ 탭을 통한 전체 세션 상태 파악입니다. 이 탭에서는 현재 연결된 TCP 세션의 상태를 종류별로 나누어 실시간으로 보여주며, ESTABLISHED, TIME_WAIT, CLOSE_WAIT 등 각 상태별 세션 수와 최대값을 그래프 형태로 확인할 수 있습니다. 이 기능은 세션 수의 급증 또는 특정 상태의 지속 여부를 시간대별로 분석하는 데 유용합니다. 세 번째 단계는 ‘네트워크 상태’ 탭을 통한 세션 단위 상세 분석입니다. 이 화면에서는 각 세션의 로컬 IP와 포트, 원격 IP와 포트, 연결 상태, 사용 프로토콜 등 구체적인 세션 정보를 개별적으로 확인할 수 있습니다. 이를 통해 특정 포트나 IP에 세션이 집중되는 현상을 탐지하거나, 외부 접근의 흔적을 식별할 수 있습니다. [모니터링 상세보기 > 서비스 > 네트워크 상태]에서 확인할 수 있습니다. 마지막 단계는 기간 설정 기능을 활용한 시계열 분석입니다. [모니터링 상세보기 > 서비스 > 기간 설정]에서 기본적으로는 1시간, 3시간, 6시간, 12시간, 24시간 단위의 시간 필터를 제공하며, 필요 시 특정 시간 구간만을 지정해 분석할 수도 있습니다. 이 기능은 이상 현상이 발생한 시간대를 중심으로 세션 수의 추이를 파악하고, 문제 발생 시점과 원인을 유기적으로 연결하는 데 효과적입니다. 리눅스 서버 TCP 세션 상태별 의미와 모니터링 기준 TCP 세션 상태는 단순히 연결 여부를 나타내는 정보가 아니라, 네트워크와 애플리케이션의 내부 상태를 간접적으로 보여주는 지표입니다. 그중에서도 운영자가 주목해야 할 주요 상태는 다음과 같습니다. ESTABLISHED는 정상적으로 연결된 세션을 의미합니다. 이 값이 갑자기 증가했다면 외부 요청이 급격히 증가했거나, 애플리케이션에서 기존 연결을 재사용하지 못하고 새로 생성하고 있을 가능성이 있습니다. 경우에 따라서는 세션 누수나 연결 유지 시간 과다로 인한 자원 낭비로 이어질 수 있습니다. CLOSE_WAIT는 상대방이 연결 종료 요청을 보낸 이후, 로컬 시스템에서 해당 세션을 닫지 못한 상태입니다. 이 상태가 계속 유지된다면 애플리케이션의 종료 처리 로직에 문제가 있을 수 있으며, 장시간 쌓일 경우 파일 디스크립터나 포트 자원 고갈을 초래할 수 있습니다. TIME_WAIT는 세션 종료 이후 일정 시간 동안 포트 재사용을 방지하기 위해 대기하는 상태입니다. 정상적인 TCP 동작의 일부이지만, 이 수치가 급격히 늘어나면 포트 고갈로 인해 새로운 연결이 실패할 수 있으며, 서버가 높은 접속 빈도에 제대로 대응하지 못할 수 있습니다. 이 외에도 LISTEN, SYN_SENT, FIN_WAIT1, LAST_ACK 등 다양한 상태들이 존재하며, 각각의 상태는 연결 성립 또는 종료 과정 중 어디에 있는지를 의미합니다. ZeniusSMS는 이러한 상태를 명확히 구분하고 실시간으로 수치를 제공함으로써, 운영자가 네트워크 연결 구조를 보다 명확히 이해하고 제어할 수 있도록 지원합니다. 운영 환경에서 활용할 수 있는 분석 시나리오 Zenius의 TCP 세션 모니터링 기능은 단순한 상태 조회를 넘어, 다양한 운영 시나리오에서 실질적인 문제 해결 도구로 활용될 수 있습니다. 첫 번째 활용 사례는 특정 시간대에 세션 수가 급증한 현상 분석입니다. TCP 상태 탭을 통해 ESTABLISHED 세션 수의 시간대별 변화를 확인하면, 특정 시간에 외부 요청이 비정상적으로 증가했는지, 혹은 애플리케이션의 세션 종료 누락이 있었는지를 빠르게 확인할 수 있습니다. 시간 필터 기능(예: 3H, 6H, 12H, 24H)을 활용하면 세션 패턴의 반복성도 함께 파악할 수 있습니다. 두 번째는 연결된 세션의 상세 정보 분석입니다. 네트워크 상태 탭에서는 각 TCP 세션의 로컬/원격 IP, 포트, 연결 상태, 프로토콜 정보를 확인할 수 있으며, 특정 포트(예: 5432, 8009 등)에 세션이 집중되는 경우 해당 서비스의 부하 상태나 외부의 의도된 트래픽 유입 여부를 분석하는 데 유용합니다. 세 번째는 포트별 세션 분포 및 집중도 분석입니다. 동일한 포트에 세션이 과도하게 집중된다면, 로드밸런싱이 제대로 작동하지 않거나, 특정 애플리케이션에서 비효율적인 연결 관리를 하고 있을 가능성이 있습니다. 이를 실시간으로 파악하면 서비스 확장, 구성 변경 등의 운영 대응을 사전에 계획할 수 있습니다. 이러한 분석들은 netstat 같은 명령어 기반 도구만으로는 쉽지 않은 작업입니다. Zenius는 이 모든 정보를 실시간으로 수집하고 시각화하여, 운영자의 분석 속도와 정확도를 크게 향상시켜줍니다. 리눅스 서버에서의 TCP 세션 상태는 단순한 연결 여부를 넘어, 시스템 내부의 이상 징후를 파악할 수 있는 중요한 지표입니다. 접속 세션 수가 갑자기 증가하거나 특정 상태가 장시간 유지되는 현상은 서비스 장애의 전조일 수 있으며, 외부 침입 시도, 애플리케이션의 비정상적인 처리 흐름, 혹은 포트 자원 고갈 같은 심각한 문제로 이어질 수 있습니다. 이러한 상황을 빠르게 감지하고 대응하기 위해서는 TCP 세션 상태를 실시간으로 추적하고, 상태별로 분류해 변화 양상을 정확히 해석할 수 있는 체계적인 모니터링 환경이 필요합니다. Zenius SMS는 이러한 요구를 충실히 반영한 통합 모니터링 솔루션으로, 리눅스 서버의 TCP 세션 상태를 실시간으로 수집하고 시각화하여 운영자가 이상 징후를 빠르게 인지하고 즉시 대응할 수 있도록 지원합니다. Zenius SMS는 명령어 기반의 netstat 분석보다 훨씬 더 빠르고 정밀하게 세션 흐름을 파악할 수 있으며, 직관적인 사용자 인터페이스를 통해 다양한 서버의 상태를 한눈에 확인하고, 필요 시 정확한 조치를 빠르게 내릴 수 있게 해줍니다. 이는 단순한 상태 조회를 넘어, 운영자가 시스템의 건강 상태를 능동적으로 관리하고, 장애를 예방하는 데 실질적인 도움을 줍니다. TCP 세션 모니터링은 이제 단순한 관제가 아닌, 서비스 품질과 보안 수준을 유지하기 위한 핵심 운영 역량입니다. Zenius SMS는 이 과정을 자동화하고 시각화함으로써, 운영자에게 실질적인 통찰과 대응력을 제공하는 강력한 도구로 자리잡고 있습니다. Zenius SMS를 통해 리눅스 서버의 세션 상태를 더 똑똑하고 빠르게, 그리고 무엇보다 정확하게 관리해보시기 바랍니다.
2025.07.10
1
2
3
4
5
6
7
8