반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
최근 IT 인프라는 과거보다 훨씬 복잡하고 빠르게 변화하고 있습니다. 예전에는 서버, 네트워크 장비, 데이터베이스, 몇 가지 핵심 애플리케이션만 관리하면 되었지만, 이제는 VMware·Hyper-V 같은 가상화 플랫폼과 Kubernetes 기반의 컨테이너 환경이 기본이 되었고, AWS·Azure·NCP 등 퍼블릭 클라우드까지 결합되며 온프레미스와 클라우드가 혼합된 하이브리드 클라우드 환경이 일반화되었습니다. 이처럼 다양한 요소로 구성된 인프라를 개별 도구로 관리하면, 장애 발생 시 원인 파악과 해결에 많은 시간과 노력이 필요합니다. 운영자는 수많은 로그와 모니터링 화면을 오가며 원인을 추적해야 하고, 복구 역시 수작업에 의존하는 경우가 많습니다. 작은 장애 하나도 전체 서비스 가용성에 영향을 미칠 수 있는 환경에서, 통합적이고 지능적인 IT 인프라 관리 체계가 꼭 필요합니다. 브레인즈컴퍼니의 Zenius EMS는 이러한 복잡한 환경에서 안정성과 효율성을 동시에 확보할 수 있도록 설계된 통합 IT 인프라 관리 솔루션입니다. 서버, 네트워크, 데이터베이스, 애플리케이션, 가상화, 컨테이너, 클라우드를 한 화면에서 관리할 수 있으며, AI·SIEM·OAM 등 다양한 모듈을 연계하면 운영 자동화, 예측 분석, 보안, 규제 준수까지 한 번에 대응할 수 있습니다. 이제, Zenius EMS로 IT 인프라를 통합 관리해야 하는 네 가지 핵심 이유를 살펴보겠습니다. 1. 모든 IT 인프라를 아우르는 진정한 통합 모니터링 기업의 IT 환경은 온프레미스 서버, 스토리지, 네트워크 장비, 데이터베이스, 애플리케이션을 비롯해 가상화와 컨테이너, 퍼블릭 클라우드까지 다층적으로 구성됩니다. 이렇게 다양한 구성 요소가 혼재된 환경에서는 개별 도구만으로 전체 상태를 파악하기 어렵고, 장애 발생 시 원인 분석에 많은 시간이 소요됩니다. 예를 들어 웹 애플리케이션의 응답이 느려지면, 서버의 CPU·메모리, 네트워크 트래픽, 데이터베이스 세션, 컨테이너 Pod 상태를 각각 확인해야 하며, 이 과정에서 근본 원인 파악이 늦어질 수 있습니다. Zenius EMS는 이러한 복잡한 환경을 단일 플랫폼에서 완전히 통합해 관리할 수 있도록 설계되었습니다. 단순히 서버와 네트워크 상태를 나열하는 수준이 아니라, 모든 인프라 데이터를 연관 관계 기반으로 실시간 시각화합니다. 토폴로지 맵과 서비스 맵은 각 구성 요소 간의 연결 상태와 서비스 흐름을 직관적으로 보여주어, 장애나 성능 저하가 발생했을 때 어느 구간에서 문제가 시작되었는지를 빠르게 파악할 수 있습니다. 또한 다차원 대시보드와 Top N 현황을 통해 자원 사용률, 트래픽, 세션 수, 이벤트 발생 빈도 같은 핵심 지표를 종합적으로 살펴볼 수 있습니다. [ Zenius EMS 솔루션 예시화면_ 대시보드/오버뷰 구성 ] 이를 통해 운영자는 한 화면에서 전체 인프라의 상태와 성능을 동시에 확인할 수 있으며, 필요한 경우 특정 서비스나 장비까지 드릴다운하여 상세 정보를 확인할 수 있습니다. 예를 들어 웹 서비스 응답 지연이 발생하면, 대시보드에서 서버 부하, 네트워크 트래픽, DB 세션, 컨테이너 Pod 상태까지 유기적으로 연결된 데이터를 기반으로 근본 원인을 신속하게 도출할 수 있습니다. 이처럼 통합 관제 환경이 제공하는 가장 큰 장점은 운영 효율성의 향상입니다. 더 이상 여러 모니터링 도구를 전환하며 데이터를 수집하고 조합할 필요가 없고, 이벤트 발생과 분석, 원인 파악, 대응까지의 시간이 크게 단축됩니다. 2. 장애 예방과 신속한 대응 지원 Zenius EMS는 IT 인프라 운영에서 중요한 과제인 장애 예방과 신속한 대응을 위해 설계되었습니다. AI 모듈과 연계해 서버, 네트워크, 데이터베이스, 컨테이너 등에서 발생하는 성능 지표를 분석하며, CPU·메모리 사용률, 네트워크 트래픽, DB 세션 등 핵심 지표를 기반으로 병목이나 이상 징후를 사전에 감지합니다. 또한 임계치에 도달하기 전 알림을 제공해 운영자가 미리 조치를 준비할 수 있어 서비스 중단 위험을 크게 줄일 수 있습니다. [ Zenius EMS 솔루션 예시화면_ AI 연계 ] Zenius EMS는 인프라 전반에서 발생하는 이벤트를 실시간으로 수집·연계해 비정상 패턴을 탐지하며, 문제 발생 시 통합 대시보드와 서비스 맵을 통해 상태 변화를 직관적으로 확인할 수 있습니다. 장애가 실제로 발생하면 OAM(운영 자동화) 모듈과 연계해 탐지부터 복구, 정상화 확인, 결과 통보까지 전 과정을 자동화하고, 모든 조치 이력은 기록으로 남아 추후 분석과 정책 개선에 활용됩니다. 또한 SIEM 모듈과 함께 사용하면 로그 수집·저장·분석·시각화를 한 곳에서 처리해 서비스 이상 징후를 보다 정밀하게 파악할 수 있으며, 장애 재발 방지와 사후 분석에도 효과적입니다. 이렇게 Zenius EMS는 사전 예방과 신속 대응을 하나의 체계로 연결하여 운영자는 반복적인 긴급 대응에서 벗어나 전략적 운영에 집중할 수 있고, 기업은 서비스 가용성과 안정성을 높이며 운영 효율성까지 함께 확보할 수 있습니다. 3. 대규모·클라우드 환경에서도 안정적인 확장성과 성능 대규모 환경과 멀티 클라우드 아키텍처에서는 서버, 네트워크, 데이터베이스, 가상화, 컨테이너, 클라우드 리소스를 동시에 안정적으로 관리할 수 있는 능력이 필요합니다. 관리 범위가 넓어질수록 이벤트 발생량과 성능 데이터의 양은 급격히 증가하며, 이를 제때 수집하고 분석하지 못하면 장애 징후를 놓치거나 대응이 늦어질 수 있습니다. Zenius EMS는 이러한 환경을 안정적으로 운영할 수 있도록 설계되었습니다. 다양한 인프라에서 발생하는 이벤트와 성능 지표를 실시간으로 수집하고, 이를 기반으로 상태 변화를 빠르게 감지합니다. CPU·메모리·스토리지 사용률, 네트워크 트래픽, 세션 수 등 주요 지표를 통합 대시보드에서 한눈에 확인할 수 있어, 대규모 환경에서도 일관된 관제 체계를 유지할 수 있습니다. 또한 SIEM 모듈과 연계하면 대용량 로그까지 함께 수집·분석할 수 있어, 방대한 환경에서도 통합 모니터링과 실시간 관제를 강화할 수 있습니다. [ Zenius EMS 솔루션 예시화면_ K8s] Zenius EMS는 컨테이너와 멀티 클라우드 환경에도 최적화되어 있습니다. Docker와 Kubernetes 기반 환경에서는 Pod, Node, Container 단위까지 세밀하게 모니터링할 수 있으며, AWS·Azure·NCP 같은 퍼블릭 클라우드와 온프레미스를 유기적으로 연결해 하이브리드 환경 전반을 일관성 있게 관리할 수 있습니다. 이와 같은 구조를 통해 Zenius EMS는 서버 수가 많고 복잡도가 높은 환경에서도 안정적인 서비스 운영을 지원합니다. 운영자는 인프라 전반의 상태를 명확하게 파악하고, 문제 발생 시 빠르게 대응할 수 있어 서비스 가용성과 안정성을 유지할 수 있습니다. 4. 보안·컴플라이언스까지 통합 지원하는 플랫폼 Zenius EMS는 운영 효율화를 넘어 보안과 규제 준수까지 한 번에 대응할 수 있는 통합 플랫폼입니다. 서버와 네트워크 장비의 보안 취약점은 SMS·NMS·GPM 모듈과 연계해 행정안전부 권고 기준으로 자동 점검하며, 점검 결과를 기반으로 한 보안 조치 가이드도 제공합니다. 이를 통해 운영자는 복잡한 점검 업무를 간소화하고, 인프라 전반의 보안 수준을 체계적으로 유지할 수 있습니다. 접근 제어와 감사 기능 역시 강화되어 있습니다. 비인가 사용자의 접근은 IP·기간·시간 단위로 제한할 수 있으며, 금지 명령어 실행을 차단하고, 모든 세션 수행 이력을 녹화해 감사 추적이 가능합니다. 공공기관이나 금융권처럼 높은 수준의 보안이 요구되는 환경에서도 안정적으로 운영할 수 있는 이유입니다. 또한 SIEM 모듈을 통해 로그 수집·저장·분석·시각화를 일원화하고, Zenius AI 모듈과 결합하면 잠재적 보안 위협과 서비스 이상 징후를 사전에 식별할 수 있습니다. 모니터링, 보안, 규제 준수를 통합적으로 제공하는 Zenius EMS는 IT 운영 리스크를 최소화하고, 기업의 IT 거버넌스를 한 단계 높여줍니다. [ Zenius EMS 솔루션 예시화면_ DBMS ] Zenius EMS 솔루션은 국내외 약 1,500여 고객사에서 활용되고 있으며, 공공기관, 금융권, 의료기관, 대기업, 국방, 해외 사업장 등 다양한 환경에서 안정성과 확장성을 이미 검증받았습니다. 하이브리드와 멀티 클라우드가 혼재된 복잡한 인프라에서도 예측 가능한 운영과 높은 효율성, 그리고 보안 신뢰성을 확보해 서비스 품질을 안정적으로 유지할 수 있습니다. 이러한 검증된 경험과 성능을 기반으로 Zenius EMS는 운영자에게는 일관되고 편리한 관리 환경을, 기업에는 안정성과 경쟁력을 제공하며, 현재도 여러 산업 현장에서 안정적인 IT 인프라 운영을 지원하고 있습니다.
2025.08.07
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
IT 시스템은 서버, 네트워크, 애플리케이션이 밀접하게 상호작용하는 다계층 구조로 운영됩니다. 이런 환경에서 발생하는 장애는 더 이상 단일 장비의 문제가 아니라, 여러 구성 요소가 연쇄적으로 영향을 주고받으며 서비스 품질에 직결됩니다. 예를 들어 한 서버의 경고는 단순한 일시적 리소스 부하에 불과할 수 있지만, 동시에 다른 계층에서 오류가 발생하면 곧바로 서비스 중단으로 이어질 수 있습니다. 반대로 특정 장비에서 치명적인 이벤트가 발생하더라도, 전체 서비스 아키텍처 차원에서는 영향도가 제한적인 경우도 흔히 발생합니다. 하지만 실제 운영 현장에서는 이런 복잡한 상황이 그대로 고려되지 못하는 경우가 많습니다. 많은 관제 환경이 여전히 장비 단위의 심각도에만 의존하기 때문에, 실제 서비스 영향과 상관없이 불필요한 알람이 쏟아지거나 반대로 중요한 장애 신호를 놓치는 일이 반복되곤 합니다. 그 결과 운영자는 수많은 이벤트 속에서 우선순위를 정하기 어렵고, 대응 속도 역시 느려질 수밖에 없습니다. Zenius EMS 솔루션의 핵심 모듈인 ERMS(Event Relation Management System)는 이러한 한계를 보완합니다. 개별 이벤트를 단순히 나열하는 대신, 규칙(Rule)으로 연계해 서비스 단위의 장애 여부를 판단하고 운영자가 즉시 상황을 이해할 수 있도록 도와줍니다. 덕분에 단순히 “어느 장비에서 문제가 발생했는가”를 넘어, “서비스 전체가 지금 어떤 상태인가”라는 더 중요한 질문에 답할 수 있습니다. 이번 글에서는 구체적인 구성 방법, 그리고 실제 운영 환경에서의 활용 사례를 통해, IT 시스템 장애를 어떻게 더 정확하고 효과적으로 관리할 수 있는지 살펴보겠습니다. Zenius EMS 솔루션의 ERMS 기능은?! 먼저 장비 관점에서의 이벤트 모니터링과 ERMS가 이벤트를 처리하는 방식이 어떻게 다른지 살펴보겠습니다. - 장비 관점에서의 이벤트 모니터링 CPU 사용률 경고, 프로세스 다운, 네트워크 지연 등 각 장비에서 발생하는 이벤트를 개별적으로 수집하고 표시하는 방식입니다. 특정 장비의 상태를 빠르게 확인할 수 있다는 장점이 있지만, 서비스 전체의 영향도를 파악하기에는 한계가 있습니다. - ERMS 이벤트 발생 로직 : 장비에서 발생한 이벤트들에 대한 Rule 설정으로 , 서비스 관점에서의 장애 모니터링 ERMS는 장비에서 발생한 여러 이벤트를 단순 나열하지 않고, 규칙(Rule)으로 연계해 종합적으로 해석하는 방식입니다. 여러 이벤트의 조합을 통해 서비스 단위의 장애 여부를 표현하기 때문에, 운영자는 불필요한 알람에 휘둘리지 않고 실제로 중요한 신호에 집중할 수 있습니다. Zenius EMS 솔루션의 ERMS 기능구성 및 확인절차 ERMS를 제대로 활용하기 위해서는 먼저 서비스 등록과 모니터링 확인 절차를 거쳐야 합니다 Step 1. [ ERMS > 설정 > 등록 ] : 신규 서비스를 등록 합니다. ① 서비스명 : 모니터링 페이지에 보여질 서비스명 입력 ② 연산 조건 : 연산 조건을 선택/입력하여 이벤트를 발생 시킬 조건 설정 - OR : 하위 서비스 또는 대상들의 상태가 하나라도 발생하면 설정한 심각도로 상태 표현 - AND : 하위 서비스 또는 대상들의 상태가 전부 발생하면 설정한 심각도록 상태 표현 - 사용자정의 : 하위 서비스 또는 대상들의 상태가 설정한 수 이상일 경우 설정한 심각도로 상태 표현 - 심각도별 개수 : 하위 서비스 또는 대상들의 심각도별 개수가 설정한 값 이상일 경우 상태 표현 ③ 심각도 : 연산 조건에 따른 이벤트 발생 시 보여지는 심각도 설정 - 인프라/감시설정의 심각도와 별개로 발생시킬 심각도 지정> 하위대상 - 선택한 서비스 대상 중 가장 높은 심각도 등급으로 상태 표시 ④ 서비스 대상 : 연산 조건에 따라 이벤트를 발생 시킬 대상 선택 - 서비스 : ERMS에 등록 된 서비스 선택 - 장비/대상 : 다른 인프라에 등록 된 장비 선택 - 감시설정 : 다른 인프라에 등록 된 감시설정 선택(서비스 대상 설정은 곧 ‘서비스 장애를 어떻게 정의할 것인가’와 직결되므로, 인프라 구조와 서비스 흐름을 고려해 신중히 지정해야 합니다.) ⑤ 이벤트 제목 : 연산 조건에 만족하여 이벤트 발생 시 보여지는 명칭 ⑥ 통보설정 : 이벤트 발생 시 설정된 통보방법 및 수신자에게 통보 되도록 설정 * SMS, 이메일, 메신저 등 다양한 채널과 연동할 수 있으며, 사전에 통보 방법이 반드시 정의되어 있어야 합니다. 운영자, 서비스 담당자, 온콜 팀 등 그룹 단위 지정이 가능해, 장애 대응 체계와 긴밀하게 연결됩니다. Step 2. [ ERMS > 모니터링 ] : 등록 확인 앞서 등록한 서비스와 Rule이 정상적으로 반영되었는지 모니터링 화면에서 확인합니다. 트리 구조로 전체 → 그룹 → 서비스 → Rule → 장비 단위까지 계층적으로 점검할 수 있어, 설정 누락이나 오작동 여부를 쉽게 파악할 수 있습니다. Zenius EMS 솔루션의 ERMS 활용 가이드 ERMS를 실제 환경에서 적용할 수 있는 대표적인 사례를 살펴보겠습니다. Case 1. 연관 서비스 간 이벤트 관리 ERMS를 활용하면 서로 다른 인프라에서 발생한 이벤트를 하나의 논리적 서비스 단위로 묶어 관리할 수 있습니다. 이를 통해 단일 장비 경보가 아니라, 실제 서비스 차원의 장애 인지가 가능해집니다. [Web 서비스와 연관 된 감시설정을 등록한 사례] 웹 서비스와 관련된 CPU 사용률, 프로세스 상태, 네트워크 연결 상태 등 여러 감시설정을 하나의 서비스로 등록합니다. 등록된 서비스는 “N개 이상 이벤트 발생 시”라는 조건으로 Rule을 구성합니다. 조건이 충족되면 서비스 메인 담당자(예: 홍길동)에게 SMS, E-mail 등으로 자동 통보가 이뤄집니다. 이를 통해 운영자는 단순히 경보를 나열하는 대신, 서비스 전체의 관점에서 중요한 신호만 걸러내어 신속히 대응할 수 있습니다. Case 2. 이중화 구성 관리 이중화 서버나 네트워크 장비 환경에서는 한쪽 노드가 장애를 겪더라도 서비스는 계속 유지될 수 있습니다. 하지만 양쪽 노드가 동시에 장애를 겪는 순간 서비스는 치명적인 상황에 빠지게 됩니다. ERMS는 이러한 특성을 Rule로 정의해 긴급 상황을 빠르게 알릴 수 있습니다. [이중화 구성에 대한 관리 사례] (1)신규 서비스 등록 시 이중화 구성 된 서버의 “서버다운” 감시설정 선택 (2)연산 조건, 심각도, 이벤트 제목 등을 설정하여 해당 조건에 대한 이벤트 발생 시 표현 될 정보 설정 - 연산 조건 : 이중화 구성에 대한 Rule 설정임으로 연산 조건은 “AND”로 설정 - 심각도 : 연산 조건 만족 시 발생할 이벤트 등급 - 이벤트 제목 : 해당 이벤트 발생 시 보여지는 명칭 (상황 심각성을 인지 할 수 있는 문구로 작성) (3)수신자/통보방법 설정을 통해 이벤트 발생 시 해당 서버에서 운영중인 서비스와 연관 된 담당자들에게 긴급 상황에 대한 인지가 가능하도록 합니다. 이를 통해 단일 장애에 과잉 반응하지 않으면서도, 실제 서비스 전체에 영향을 주는 상황은 놓치지 않고 빠르게 인지할 수 있습니다 Case 3. 서비스맵을 통한 시각화 모니터링 ERMS는 등록된 서비스를 시각화해 한눈에 파악할 수 있는 서비스맵 기능을 제공합니다. Sunburst, Bubble 형태의 차트를 활용하면 전체 서비스 구조와 이벤트 상태를 직관적으로 확인할 수 있습니다. [오버뷰 기능을 통한 시각화 사례] EMS > 설정 > 컴포넌트에서 “ERMS 서비스맵” 컴포넌트를 등록합니다. 이름, 제목, 서비스, 차트 종류(Sunburst/Bubble), 표시 단계 수 등을 설정합니다. 이후 등록된 컴포넌트를 오버뷰 화면에 추가합니다. ERMS 서비스 단위의 이벤트 현황이 시각적으로 표시됩니다. 다른 컴포넌트(성능 지표, 이벤트 이력 등)와 조합하면, 장애 상황과 성능 상태를 통합적으로 모니터링할 수 있습니다. 색상 변화, 계층 구조, 아이콘 조합 등을 통해 복잡한 운영 상황을 직관적으로 해석할 수 있습니다. 이를 통해 운영자는 이벤트 목록이 아닌 서비스 단위의 전체 그림을 기반으로 문제를 인지하고 대응 우선순위를 판단할 수 있습니다. [Sunburst, Bubble 차트종류] (1)오버뷰 구성 시 앞에서 생성한 컴포넌트를 추가하여 ERMS 서비스 단위 기준 이벤트와 다양한 컴포넌트와의 조합을 통해 전체적인 운영상황을 시각화하여 가시적인 모니터링이 가능 합니다. [ERMS 서비스 상태 오버뷰 시각화 구성] Zenius EMS 솔루션의 ERMS 구체적 활용 효과 기존 이벤트 관리 환경에서는 장애 여부를 개별 장비의 심각도만으로 판단했습니다. 이 때문에 중요도가 낮은 장비에서 발생한 이벤트라도 ‘치명’으로 기록되면, 실제 서비스 영향과 무관하게 서비스 전체가 그대로 ‘치명’ 장애로 표시되곤 했습니다. 반대로 여러 장비에서 동시에 문제가 발생해 서비스에 큰 부담을 주는 상황임에도, 단일 이벤트 기준만으로는 이를 제대로 드러내기 어려웠습니다. 결국 서비스 차원에서 실질적인 장애 여부를 구분하기 힘들었고, 운영자는 불필요한 경보와 오판 속에서 효율적인 대응이 어려웠습니다 ERMS를 도입하면 이런 한계를 극복할 수 있습니다. 이벤트 간의 연관 관계를 규칙(Rule)으로 정의하여 단순한 장비 경보가 아니라 서비스 단위의 장애를 판정할 수 있기 때문입니다. 예를 들어, A 장비에서 ‘치명’ 이벤트가 발생하고 동시에 B 장비에서 ‘주의’ 이벤트가 발생한다면, 이를 묶어서 서비스 전체를 ‘긴급’ 상태로 표현할 수 있습니다. 이처럼 서비스 관점에서 장애를 재정의하면 실제 영향이 큰 상황만 선별적으로 드러나고, 불필요한 알람은 크게 줄어듭니다. 운영자는 개별 이벤트에 매달릴 필요 없이 서비스 전체 상태를 기준으로 명확하게 판단할 수 있으며, 그 결과 대응의 정확성과 속도가 모두 향상됩니다. 서비스 품질 관리 또한 한층 안정적으로 이루어집니다. IT 시스템 장애는 이제 단순히 개별 장비 이벤트만으로는 정확히 판단하기 어렵습니다. Zenius EMS 솔루션의 ERMS 모듈은 이벤트를 서비스 단위의 규칙으로 묶어 해석함으로써, 불필요한 알람을 줄이고 실제로 중요한 장애만 명확히 드러냅니다. 서비스 등록과 Rule 설정, 시각화 기능을 통해 운영자는 장애 발생 시점을 더 빠르게 파악하고 우선순위를 명확히 정할 수 있으며, 결과적으로 서비스 안정성과 운영 효율성을 동시에 확보할 수 있습니다. 즉, ERMS는 IT 시스템을 장비 중심의 모니터링에서 서비스 중심의 관리로 전환하게 만드는 핵심 도구라 할 수 있습니다.
2025.09.09
다음 슬라이드 보기