반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
시스템 장애, Zenius EMS 솔루션으로 정확하고 효과적으로 관리하는 법
IT 시스템은 서버, 네트워크, 애플리케이션이 밀접하게 상호작용하는 다계층 구조로 운영됩니다. 이런 환경에서 발생하는 장애는 더 이상 단일 장비의 문제가 아니라, 여러 구성 요소가 연쇄적으로 영향을 주고받으며 서비스 품질에 직결됩니다. 예를 들어 한 서버의 경고는 단순한 일시적 리소스 부하에 불과할 수 있지만, 동시에 다른 계층에서 오류가 발생하면 곧바로 서비스 중단으로 이어질 수 있습니다. 반대로 특정 장비에서 치명적인 이벤트가 발생하더라도, 전체 서비스 아키텍처 차원에서는 영향도가 제한적인 경우도 흔히 발생합니다. 하지만 실제 운영 현장에서는 이런 복잡한 상황이 그대로 고려되지 못하는 경우가 많습니다. 많은 관제 환경이 여전히 장비 단위의 심각도에만 의존하기 때문에, 실제 서비스 영향과 상관없이 불필요한 알람이 쏟아지거나 반대로 중요한 장애 신호를 놓치는 일이 반복되곤 합니다. 그 결과 운영자는 수많은 이벤트 속에서 우선순위를 정하기 어렵고, 대응 속도 역시 느려질 수밖에 없습니다. Zenius EMS 솔루션의 핵심 모듈인 ERMS(Event Relation Management System)는 이러한 한계를 보완합니다. 개별 이벤트를 단순히 나열하는 대신, 규칙(Rule)으로 연계해 서비스 단위의 장애 여부를 판단하고 운영자가 즉시 상황을 이해할 수 있도록 도와줍니다. 덕분에 단순히 “어느 장비에서 문제가 발생했는가”를 넘어, “서비스 전체가 지금 어떤 상태인가”라는 더 중요한 질문에 답할 수 있습니다. 이번 글에서는 구체적인 구성 방법, 그리고 실제 운영 환경에서의 활용 사례를 통해, IT 시스템 장애를 어떻게 더 정확하고 효과적으로 관리할 수 있는지 살펴보겠습니다. Zenius EMS 솔루션의 ERMS 기능은?! 먼저 장비 관점에서의 이벤트 모니터링과 ERMS가 이벤트를 처리하는 방식이 어떻게 다른지 살펴보겠습니다. - 장비 관점에서의 이벤트 모니터링 CPU 사용률 경고, 프로세스 다운, 네트워크 지연 등 각 장비에서 발생하는 이벤트를 개별적으로 수집하고 표시하는 방식입니다. 특정 장비의 상태를 빠르게 확인할 수 있다는 장점이 있지만, 서비스 전체의 영향도를 파악하기에는 한계가 있습니다. - ERMS 이벤트 발생 로직 : 장비에서 발생한 이벤트들에 대한 Rule 설정으로 , 서비스 관점에서의 장애 모니터링 ERMS는 장비에서 발생한 여러 이벤트를 단순 나열하지 않고, 규칙(Rule)으로 연계해 종합적으로 해석하는 방식입니다. 여러 이벤트의 조합을 통해 서비스 단위의 장애 여부를 표현하기 때문에, 운영자는 불필요한 알람에 휘둘리지 않고 실제로 중요한 신호에 집중할 수 있습니다. Zenius EMS 솔루션의 ERMS 기능구성 및 확인절차 ERMS를 제대로 활용하기 위해서는 먼저 서비스 등록과 모니터링 확인 절차를 거쳐야 합니다 Step 1. [ ERMS > 설정 > 등록 ] : 신규 서비스를 등록 합니다. ① 서비스명 : 모니터링 페이지에 보여질 서비스명 입력 ② 연산 조건 : 연산 조건을 선택/입력하여 이벤트를 발생 시킬 조건 설정 - OR : 하위 서비스 또는 대상들의 상태가 하나라도 발생하면 설정한 심각도로 상태 표현 - AND : 하위 서비스 또는 대상들의 상태가 전부 발생하면 설정한 심각도록 상태 표현 - 사용자정의 : 하위 서비스 또는 대상들의 상태가 설정한 수 이상일 경우 설정한 심각도로 상태 표현 - 심각도별 개수 : 하위 서비스 또는 대상들의 심각도별 개수가 설정한 값 이상일 경우 상태 표현 ③ 심각도 : 연산 조건에 따른 이벤트 발생 시 보여지는 심각도 설정 - 인프라/감시설정의 심각도와 별개로 발생시킬 심각도 지정> 하위대상 - 선택한 서비스 대상 중 가장 높은 심각도 등급으로 상태 표시 ④ 서비스 대상 : 연산 조건에 따라 이벤트를 발생 시킬 대상 선택 - 서비스 : ERMS에 등록 된 서비스 선택 - 장비/대상 : 다른 인프라에 등록 된 장비 선택 - 감시설정 : 다른 인프라에 등록 된 감시설정 선택(서비스 대상 설정은 곧 ‘서비스 장애를 어떻게 정의할 것인가’와 직결되므로, 인프라 구조와 서비스 흐름을 고려해 신중히 지정해야 합니다.) ⑤ 이벤트 제목 : 연산 조건에 만족하여 이벤트 발생 시 보여지는 명칭 ⑥ 통보설정 : 이벤트 발생 시 설정된 통보방법 및 수신자에게 통보 되도록 설정 * SMS, 이메일, 메신저 등 다양한 채널과 연동할 수 있으며, 사전에 통보 방법이 반드시 정의되어 있어야 합니다. 운영자, 서비스 담당자, 온콜 팀 등 그룹 단위 지정이 가능해, 장애 대응 체계와 긴밀하게 연결됩니다. Step 2. [ ERMS > 모니터링 ] : 등록 확인 앞서 등록한 서비스와 Rule이 정상적으로 반영되었는지 모니터링 화면에서 확인합니다. 트리 구조로 전체 → 그룹 → 서비스 → Rule → 장비 단위까지 계층적으로 점검할 수 있어, 설정 누락이나 오작동 여부를 쉽게 파악할 수 있습니다. Zenius EMS 솔루션의 ERMS 활용 가이드 ERMS를 실제 환경에서 적용할 수 있는 대표적인 사례를 살펴보겠습니다. Case 1. 연관 서비스 간 이벤트 관리 ERMS를 활용하면 서로 다른 인프라에서 발생한 이벤트를 하나의 논리적 서비스 단위로 묶어 관리할 수 있습니다. 이를 통해 단일 장비 경보가 아니라, 실제 서비스 차원의 장애 인지가 가능해집니다. [Web 서비스와 연관 된 감시설정을 등록한 사례] 웹 서비스와 관련된 CPU 사용률, 프로세스 상태, 네트워크 연결 상태 등 여러 감시설정을 하나의 서비스로 등록합니다. 등록된 서비스는 “N개 이상 이벤트 발생 시”라는 조건으로 Rule을 구성합니다. 조건이 충족되면 서비스 메인 담당자(예: 홍길동)에게 SMS, E-mail 등으로 자동 통보가 이뤄집니다. 이를 통해 운영자는 단순히 경보를 나열하는 대신, 서비스 전체의 관점에서 중요한 신호만 걸러내어 신속히 대응할 수 있습니다. Case 2. 이중화 구성 관리 이중화 서버나 네트워크 장비 환경에서는 한쪽 노드가 장애를 겪더라도 서비스는 계속 유지될 수 있습니다. 하지만 양쪽 노드가 동시에 장애를 겪는 순간 서비스는 치명적인 상황에 빠지게 됩니다. ERMS는 이러한 특성을 Rule로 정의해 긴급 상황을 빠르게 알릴 수 있습니다. [이중화 구성에 대한 관리 사례] (1)신규 서비스 등록 시 이중화 구성 된 서버의 “서버다운” 감시설정 선택 (2)연산 조건, 심각도, 이벤트 제목 등을 설정하여 해당 조건에 대한 이벤트 발생 시 표현 될 정보 설정 - 연산 조건 : 이중화 구성에 대한 Rule 설정임으로 연산 조건은 “AND”로 설정 - 심각도 : 연산 조건 만족 시 발생할 이벤트 등급 - 이벤트 제목 : 해당 이벤트 발생 시 보여지는 명칭 (상황 심각성을 인지 할 수 있는 문구로 작성) (3)수신자/통보방법 설정을 통해 이벤트 발생 시 해당 서버에서 운영중인 서비스와 연관 된 담당자들에게 긴급 상황에 대한 인지가 가능하도록 합니다. 이를 통해 단일 장애에 과잉 반응하지 않으면서도, 실제 서비스 전체에 영향을 주는 상황은 놓치지 않고 빠르게 인지할 수 있습니다 Case 3. 서비스맵을 통한 시각화 모니터링 ERMS는 등록된 서비스를 시각화해 한눈에 파악할 수 있는 서비스맵 기능을 제공합니다. Sunburst, Bubble 형태의 차트를 활용하면 전체 서비스 구조와 이벤트 상태를 직관적으로 확인할 수 있습니다. [오버뷰 기능을 통한 시각화 사례] EMS > 설정 > 컴포넌트에서 “ERMS 서비스맵” 컴포넌트를 등록합니다. 이름, 제목, 서비스, 차트 종류(Sunburst/Bubble), 표시 단계 수 등을 설정합니다. 이후 등록된 컴포넌트를 오버뷰 화면에 추가합니다. ERMS 서비스 단위의 이벤트 현황이 시각적으로 표시됩니다. 다른 컴포넌트(성능 지표, 이벤트 이력 등)와 조합하면, 장애 상황과 성능 상태를 통합적으로 모니터링할 수 있습니다. 색상 변화, 계층 구조, 아이콘 조합 등을 통해 복잡한 운영 상황을 직관적으로 해석할 수 있습니다. 이를 통해 운영자는 이벤트 목록이 아닌 서비스 단위의 전체 그림을 기반으로 문제를 인지하고 대응 우선순위를 판단할 수 있습니다. [Sunburst, Bubble 차트종류] (1)오버뷰 구성 시 앞에서 생성한 컴포넌트를 추가하여 ERMS 서비스 단위 기준 이벤트와 다양한 컴포넌트와의 조합을 통해 전체적인 운영상황을 시각화하여 가시적인 모니터링이 가능 합니다. [ERMS 서비스 상태 오버뷰 시각화 구성] Zenius EMS 솔루션의 ERMS 구체적 활용 효과 기존 이벤트 관리 환경에서는 장애 여부를 개별 장비의 심각도만으로 판단했습니다. 이 때문에 중요도가 낮은 장비에서 발생한 이벤트라도 ‘치명’으로 기록되면, 실제 서비스 영향과 무관하게 서비스 전체가 그대로 ‘치명’ 장애로 표시되곤 했습니다. 반대로 여러 장비에서 동시에 문제가 발생해 서비스에 큰 부담을 주는 상황임에도, 단일 이벤트 기준만으로는 이를 제대로 드러내기 어려웠습니다. 결국 서비스 차원에서 실질적인 장애 여부를 구분하기 힘들었고, 운영자는 불필요한 경보와 오판 속에서 효율적인 대응이 어려웠습니다 ERMS를 도입하면 이런 한계를 극복할 수 있습니다. 이벤트 간의 연관 관계를 규칙(Rule)으로 정의하여 단순한 장비 경보가 아니라 서비스 단위의 장애를 판정할 수 있기 때문입니다. 예를 들어, A 장비에서 ‘치명’ 이벤트가 발생하고 동시에 B 장비에서 ‘주의’ 이벤트가 발생한다면, 이를 묶어서 서비스 전체를 ‘긴급’ 상태로 표현할 수 있습니다. 이처럼 서비스 관점에서 장애를 재정의하면 실제 영향이 큰 상황만 선별적으로 드러나고, 불필요한 알람은 크게 줄어듭니다. 운영자는 개별 이벤트에 매달릴 필요 없이 서비스 전체 상태를 기준으로 명확하게 판단할 수 있으며, 그 결과 대응의 정확성과 속도가 모두 향상됩니다. 서비스 품질 관리 또한 한층 안정적으로 이루어집니다. IT 시스템 장애는 이제 단순히 개별 장비 이벤트만으로는 정확히 판단하기 어렵습니다. Zenius EMS 솔루션의 ERMS 모듈은 이벤트를 서비스 단위의 규칙으로 묶어 해석함으로써, 불필요한 알람을 줄이고 실제로 중요한 장애만 명확히 드러냅니다. 서비스 등록과 Rule 설정, 시각화 기능을 통해 운영자는 장애 발생 시점을 더 빠르게 파악하고 우선순위를 명확히 정할 수 있으며, 결과적으로 서비스 안정성과 운영 효율성을 동시에 확보할 수 있습니다. 즉, ERMS는 IT 시스템을 장비 중심의 모니터링에서 서비스 중심의 관리로 전환하게 만드는 핵심 도구라 할 수 있습니다.
2025.09.09
다음 슬라이드 보기