반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
IT 인프라 모니터링 솔루션, Zenius EMS를 통한 랙 실장도 구성 가이드
기술이야기
IT 인프라 모니터링 솔루션, Zenius EMS를 통한 랙 실장도 구성 가이드
오늘날의 IT 인프라는 규모가 확장되고 구조가 점점 복잡해지면서, 운영 환경 전반에 대한 명확한 가시성과 통합 관리의 중요성이 크게 부각되고 있습니다. 하나의 전산실에는 수십 개의 랙이 밀집되어 있고, 그 안에는 다양한 제조사와 용도의 서버 및 네트워크 장비들이 혼재된 채 운용되고 있습니다. 이처럼 이질적인 장비들이 유기적으로 연결된 환경에서는, 단순한 논리적 네트워크 구성도만으로는 전체 인프라 구조를 명확히 파악하거나 효율적으로 관리하는 데 한계가 있습니다. 시간이 지남에 따라 장비 교체나 포트 연결 변경이 반복되면, 기존 구성도는 점차 실제 환경과 괴리를 보이게 되고, 장애 발생 시 원인 장비를 정확히 식별하지 못해 대응이 지연되거나 잘못된 조치로 이어질 가능성이 높아집니다. 여기에 운영 인력의 변경이나 인수인계가 충분히 이루어지지 않을 경우, 전산실 전반에 대한 정보 단절은 심각한 운영 리스크로 작용할 수 있습니다. 이러한 현실을 고려할 때, 장비의 물리적 위치까지 통합한 시각적 토폴로지 구성은 더 이상 선택이 아닌 필수 요소입니다. 특히 랙 실장도 기반의 정밀한 시각화를 통해 전산실 내 장비의 실제 위치, 연결 관계, 상태 정보를 한눈에 파악할 수 있으며, 장애 대응은 물론 공간 활용, 자산 관리 등 다양한 운영 업무를 보다 체계적이고 효율적으로 수행할 수 있습니다. 랙 실장도 기반 토폴로지가 제공하는 운영상의 이점은? 랙 실장도 기반 토폴로지는 단순한 장비 배치를 넘어서, 운영의 정확성, 신속성, 효율성을 고르게 향상시키는 실질적인 도구입니다. 무엇보다 장애 대응 속도가 크게 개선됩니다. 예를 들어 특정 서버에서 비정상 트래픽이 발생했을 때, 운영자는 실장도 맵을 통해 해당 장비의 랙 위치와 유닛(Unit) 정보를 즉시 확인할 수 있습니다. 물리적 위치가 명확하게 보이기 때문에 현장 방문 없이도 정확한 복구 지시가 가능해집니다. 자산 정보와 모니터링 항목을 실장도 위에 함께 표시할 수 있다는 점도 큰 장점입니다. 장비의 모델, 설치일, 담당자뿐 아니라 등록된 FMS 설비의 OID 기반 개별 정보까지 확인할 수 있어, 이상 징후를 조기에 감지하고 신속하게 대응할 수 있습니다. 실장도는 공간 활용 면에서도 유용합니다. 사용되지 않는 유닛이나 불용 공간을 쉽게 파악할 수 있어, 장비 증설이나 재배치 시 적절한 위치를 빠르게 결정할 수 있습니다. 냉각 흐름이나 전력 균형 등 물리 인프라 운영에도 도움이 됩니다. 무엇보다 시각화 기반 랙 실장도 구성은 신규 인력의 빠른 환경 적응을 돕는 데에도 효과적입니다. 장비의 위치와 상태가 직관적으로 표현되기 때문에 인수인계 과정이 수월하고, 여러 운영자가 함께 관리하는 환경에서도 일관된 운영 체계를 유지할 수 있습니다. Zenius EMS는 이러한 운영 환경을 효과적으로 지원할 수 있도록, 직관적인 GUI 기반의 랙 실장도 구성 기능을 제공합니다. 전산실 구조를 실제에 가깝게 시각화하고, 장비 상태와 자산 정보를 통합해 실시간으로 관리할 수 있는 환경을 누구나 쉽게 구현할 수 있습니다. Zenius EMS를 활용한 구성 절차 및 활용방법을 자세히 살펴보겠습니다. Zenius EMS를 통한 랙 실장도 구성 가이드 랙 실장도 구성하기 Zenius EMS는 전산실의 실제 공간 구조를 반영해 랙 실장도 기반의 정밀한 토폴로지 맵을 구성할 수 있는 기능을 제공합니다. 이를 통해 장비의 물리적 위치, 상태 정보, 자산 정보를 한 화면에서 통합적으로 확인하고, 장애 대응이나 공간 활용, 자산 관리 등의 업무를 보다 효율적으로 수행할 수 있습니다. 먼저 실장도를 구성하는 방법을 자세히 알아보겠습니다. Step 01. [EMS > 토폴로지 > 맵목록관리 > 맵등록] 신규 맵 등록 시 ‘실장도’ 타입을 선택하여 전산실 기반의 맵을 생성합니다. Step 02. [EMS > 토폴로지 > 등록맵 선택 > 편집] 생성된 맵을 선택하고 ‘에디터 모드’를 활성화합니다. Step 3. [ EMS > 토폴로지 > 등록맵 선택 > 편집 > 시설 or 아이템 Drag ] 전산실의 실제 구조에 맞춰 랙, 장비, 기타 시설 아이템을 드래그하여 배치합니다. Step 4. [EMS > 토폴로지 > 등록맵 선택 > 편집 > 랙 장비 설정] 1. 배치한 랙 장비를 클릭 후 오른쪽 속성의 장비 설정을 클릭합니다. 2. 랙 유닛의 크기를 설정합니다. 3. 서버의 경우 드래그 하여 배치합니다. 불용공간의 경우 빈 부분을 클릭 후 오른쪽 버튼을 클릭하여 장비 추가를 선택합니다. 4. 랙 혹은 불용공간을 오른쪽 클릭하여 장비를 확장합니다. 5. 불용공간을 오른쪽 클릭하여 장비명을 변경합니다. 6. 랙과 관련된 FMS OID 정보를 추가합니다. Step 5. [EMS > 토폴로지 > 등록맵 선택 > 편집 > 랙 실장도 배치하기] 1. 배치한 랙 장비를 오른쪽 클릭합니다 2. 랙 실장도 추가를 클릭합니다. 3. 랙 실장도를 드래그하여 원하는 위치에 배치합니다. Step 6. [EMS > 토폴로지 > 등록맵 선택 > 편집 > 장비 설정 : 임의장비 상태 표시] 1. 배치한 장비를 클릭 후 오른쪽 속성의 장비 설정을 클릭합니다. 2. 해당하는 장비를 선택한 후 오른쪽 화살표를 클릭하여 대상을 지정합니다. 3. 확인버튼을 클릭하여 설정을 저장합니다. Step 7. [EMS > 토폴로지 > 등록맵 선택 > 편집 > 장비 설정 : 데이터라벨 설정] 1. 배치한 데이터라벨을 클릭합니다. 2. 타이틀을 수정합니다. 3. OID 설정을 클릭합니다. 4. 표시할 대상(OID 데이터)을 클릭후 오른쪽으로 이동합니다. 5. 확인 버튼을 눌러 저장합니다. Step 8. [ EMS > 토폴로지 > 등록맵 선택 > 편집 > 자산 정보 입력(공통)] 1. 장비를 클릭하고, ‘자산 정보’ 메뉴를 선택합니다. 2. 모델명, 제조사, 구입일자, 담당자 등 자산 정보를 입력합니다. 3. ‘확인’ 버튼을 눌러 저장하고, 필요 시 라벨에 표시할 항목과 위치를 설정합니다. 위 절차를 통해 Zenius EMS에서는 현장 전산실 구조와 모니터링 데이터를 유기적으로 연결한 실장도 기반 토폴로지 구성이 가능하며, 이를 통해 직관적인 운영 환경과 신속한 장애 대응 체계를 구축할 수 있습니다. Zenius EMS에서 랙 실장도 기반 토폴로지 활용가이드 Zenius EMS를 통해 전산실 내 장비의 실제 배치를 랙 단위로 정밀하게 구성하고, 실시간 상태 정보와 자산 데이터를 함께 시각화할 수 있습니다. 이를 통해 장애 대응, 자산 관리, 공간 활용 등 다양한 운영 업무를 보다 체계적이고 효율적으로 수행할 수 있으며, 운영 가시성과 판단 속도 또한 크게 향상됩니다. 실장도 기반 토폴로지가 실제 운영에 어떤 방식으로 활용되고, 어떤 효과를 제공하는지 대표적인 사례를 통해 살펴보겠습니다. Case 1. 랙 구성 파악 및 장애 대응 속도 향상 앞서 소개한 구성 절차를 따라 랙 실장도를 구축하면, 전산실 내부의 실제 공간 구조를 정밀하게 반영한 토폴로지를 구성할 수 있습니다. 이러한 실장도 기반 구성은 단순히 장비 위치를 기록하는 데 그치지 않고, 장비 간 물리적 배치 관계와 연결 경로를 시각적으로 확인할 수 있게 해줍니다. 즉, 각 장비가 어떤 랙에 설치되어 있는지, 몇 번째 유닛(Unit)에 위치하는지 파악할 수 있습니다. 이는 특히 장애 발생 시 뛰어난 효과를 발휘합니다. 운영자는 문제 발생 장비의 정확한 물리적 위치를 즉시 식별할 수 있어, 현장 대응 시간을 최소화하고, 중복 조치나 잘못된 장비 접근으로 인한 2차 리스크를 방지할 수 있습니다. [랙 실장도 기반 구성한 토폴로지의 예시] Zenius EMS의 실장도 화면에서는 각 장비의 위치, 연결 구조, 상태 정보가 통합적으로 표현되며, 복잡한 전산실 구조를 누구나 직관적으로 이해하고 대응할 수 있도록 지원합니다. Case 2. 이벤트 기반 실시간 모니터링 전산실 운영에서 가장 중요한 요소 중 하나는 구성 상태와 장애 상황을 실시간으로 모니터링하고 즉시 대응하는 체계입니다. 그러나 전통적인 모니터링 도구만으로는 장비의 실제 위치나 배치 상태를 파악하는 데 한계가 있으며, 물리적 구성 정보가 부족할 경우 원인 분석과 복구 시간이 지연될 수 있습니다. Zenius EMS는 이러한 한계를 극복하기 위해, 랙 실장도와 연동된 이벤트 시각화 기능을 제공합니다. 장애 이벤트가 발생하면 해당 장비 위치에 경고 아이콘이나 색상 변화가 실시간으로 표시되어 운영자가 직관적으로 문제를 인지할 수 있습니다. 마우스를 해당 장비 위에 올려두거나 클릭하는 것만으로도 이벤트의 상세 내용과 관련 장비 간의 연결 상태를 바로 확인할 수 있어, 복잡한 구조 속에서도 빠르고 정확한 대응이 가능합니다. [랙 실장도를 통한 장비 이벤트 확인 사례] 마우스 오버 시: 장비 상단에 주요 장애 유형 또는 간략한 경고 메시지가 표시됩니다. 마우스 클릭 시: 연결된 인터페이스 정보, 이벤트 발생 시간, 장애 심각도 등 상세 내용이 팝업으로 제공됩니다. Zenius EMS에서 랙 실장도 기반 토폴로지 활용사례 Zenius EMS의 랙 실장도 기반 토폴로지 기능은 실제 현장에서 높은 운영 효과를 입증하고 있으며, 대표적인 사례로 전국 시도 교육청의 통합관제센터를 들 수 있습니다. 교육청 전산망은 다양한 제조사의 장비가 혼재된 복잡한 구조로, 장애 발생 시 빠르고 정확한 대응이 필수적입니다. 도입 이전에는 논리적 구성도와 장비 목록에 의존해 물리적 위치를 확인해야 했고, 이로 인해 장애 식별과 현장 대응에 시간이 지연되는 문제가 반복되었습니다. Zenius EMS를 도입한 이후, 각 교육청은 실제 전산실 구조를 기반으로 랙 실장도를 정밀하게 구성할 수 있었고, 이벤트 발생 시 해당 장비의 위치와 상태가 실시간으로 시각화되어 누구나 직관적으로 장애 상황을 인지하고 대응할 수 있게 되었습니다. 장비별 자산 정보를 통합해 단일 화면에서 운영 판단이 가능해졌고, 장애 인지부터 분석, 조치까지의 전 과정이 크게 단축되었습니다. 랙 실장도 기반 토폴로지는 전산실 운영의 여러 측면에서 실질적인 개선 효과를 제공합니다. 신규 장비 도입 시에는 공간 여유를 시각적으로 파악해 배치 계획을 수립할 수 있으며, 자산 등록과 정리 작업도 보다 체계적으로 이뤄질 수 있습니다. 장비를 교체하거나 이전할 경우에는 기존 위치와 연결 상태를 쉽게 확인할 수 있어 작업 정확도가 높아지고 현장 혼선도 줄어듭니다. 또한 장비의 물리적 위치, 역할, 상태 정보가 시각적으로 통합되어 표현되기 때문에, 운영자 간의 업무 공유나 인수인계가 원활해지고, 다양한 담당자가 협업하는 환경에서도 시스템 전반에 대한 이해도와 대응 일관성이 높아집니다. 물리적 위치를 기준으로 접근 제어나 운영 정책을 적용할 수 있어, 보안 관리 측면에서도 유용하게 활용됩니다. 이러한 운영 효과는 교육기관뿐만 아니라, 다수의 장비를 운영하는 공공기관, 데이터센터, 대규모 기업 환경 등 전산실을 보유한 다양한 조직 전반에 걸쳐 동일하게 적용될 수 있으며, 인프라 운영의 안정성과 효율성을 함께 높이는 기반으로 활용될 수 있습니다.
2025.06.20
기술이야기
네트워크 모니터링 툴을 통한 LLDP 오토맵 구성 및 활용 방법
기술이야기
네트워크 모니터링 툴을 통한 LLDP 오토맵 구성 및 활용 방법
디지털 인프라 환경이 점차 복잡해지면서, 네트워크 구성도 보다 유연하고 다층적인 구조로 변화하고 있습니다. 다양한 벤더의 장비가 혼재되어 운영되고, 포트 연결은 수시로 변경되며, 구성도는 시간이 지날수록 실제 환경과 일치하지 않는 경우가 많습니다. 이러한 변화 속에서 운영자는 전체 네트워크 구조를 정확히 파악하고 관리하는 데 어려움을 겪게 됩니다. 연결 상태를 명확히 확인하지 못하면 장애 대응이 지연되고, 트래픽 흐름이나 장비 간 영향도 분석이 제한될 수밖에 없습니다. 문서화된 구성도만으로 실시간 상태를 파악하는 데는 분명한 한계가 있습니다. 이럴 때 LLDP(Link Layer Discovery Protocol)를 활용하면, 장비 간의 연결 정보를 자동으로 수집하고 시각적으로 표현할 수 있어, 현재의 네트워크 상태를 보다 직관적으로 파악할 수 있습니다. Zenius NMS와 같은 네트워크 모니터링 툴은 이러한 LLDP 정보를 기반으로 오토맵을 자동 구성해, 운영자가 수작업 없이도 네트워크의 실제 연결 상태를 명확히 확인하고 효율적으로 관리할 수 있도록 지원합니다. 그렇다면 LLDP 기반 오토맵의 개념과 이를 통해 기대할 수 있는 운영상 효과, 그리고 네트워크 모니터링 툴인 Zenius NMS에서 이를 어떻게 구체적으로 활용할 수 있는지를 차례대로 살펴보겠습니다. LLDP 기반의 오토맵은 무엇이고 어떤 문제를 해결할 수 있을까? LLDP는 네트워크 장비 간의 연결 정보를 자동으로 수집하는 프로토콜입니다. Cisco에서 사용하는 CDP(Cisco Discovery Protocol)와 유사한 기능을 하지만, LLDP는 특정 벤더에 종속되지 않아 다양한 제조사의 장비 환경에서도 유연하게 활용할 수 있습니다. 네트워크 모니터링 툴 Zenius NMS는 이러한 LLDP 정보를 활용해 장비 간 실제 연결 상태를 자동으로 시각화하는 오토맵 기능을 제공합니다. 별도의 수작업 없이도 실시간 구성도 수준의 네트워크 맵을 생성할 수 있어, 운영자가 현재 네트워크 구조를 보다 직관적으로 파악할 수 있도록 돕습니다. 특히 구성 정보가 부실하거나 최신화되지 않은 환경에서도 유용하며, 수년간 운영되며 복잡해진 네트워크 구조도 LLDP 오토맵을 통해 효과적으로 시각화할 수 있습니다. 장애가 발생했을 때는 어떤 포트가 어느 장비와 연결되어 있는지를 즉시 확인할 수 있어, 원인 파악과 대응 속도를 높이는 데 도움이 됩니다. 또한 각 인터페이스의 상태 정보(BPS, PPS, 최대 전송 속도 등)도 함께 표시되어, 트래픽 흐름을 보다 정확하게 분석할 수 있습니다. 결과적으로 LLDP 기반 오토맵은 구성도가 없는 환경에서도 네트워크 연결 상태를 명확하게 파악하고, 장애 대응과 성능 분석의 효율을 높이는 데 실질적으로 활용할 수 있습니다. 이제 Zenius NMS를 통해 LLDP 오토맵을 어떻게 구성하고 활용할 수 있는지 자세히 살펴보겠습니다. Zenius NMS에서 LLDP 기반 오토맵 구성 및 활용 방법 오토맵 구성 절차 Zenius NMS는 LLDP로 수집한 장비 간 연결 정보를 바탕으로, 네트워크 토폴로지를 자동으로 구성할 수 있는 기능을 제공합니다. 아래와 같은 절차를 통해 오토맵을 손쉽게 생성하고, 운영 환경에서 실시간으로 활용할 수 있습니다 [Step 01] [EMS > 토폴로지 > 맵목록관리 > 맵등록]: 먼저 오토맵을 구성할 새로운 맵을 등록합니다. 이 단계에서는 맵의 이름, 유형 등을 입력하고 기본 설정을 저장합니다. [Step 02] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 등록한 맵을 선택한 후, [편집] 버튼을 클릭하여 맵 에디터 모드를 활성화합니다. [Step 03] [EMS > 토폴로지 > 등록맵 선택 > 편집 > NMS 자동맵 > 대상 Drag]: NMS 자동맵 기능을 선택한 뒤, 자동 구성을 적용할 장비(스위치, 라우터 등)를 화면으로 드래그합니다. 이후 [맵구성] 버튼을 클릭하면, 선택한 장비를 중심으로 LLDP 기반의 연결 구조가 자동 생성됩니다. [Step 04] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 자동 생성된 맵이 화면에 나타나면, 각 장비의 위치를 드래그하여 보기 좋게 배치할 수 있습니다. [Step 05] [EMS > 토폴로지 > 등록맵 선택 > 편집]: 구성한 맵이 완성되면, [오토맵 저장]을 눌러 현재 상태를 저장합니다. 이후 해당 맵은 Zenius EMS/NMS에서 실시간 모니터링 화면과 연동되어 사용됩니다. 이와 같은 절차를 통해 구성된 LLDP 오토맵은, 구성도가 없는 환경에서도 네트워크 전반의 실제 구조를 빠르게 파악하고, 운영 중 발생하는 연결 변화나 장애 상황을 실시간으로 모니터링하는 데 유용하게 활용할 수 있습니다. 이제 이러한 오토맵 기능이 실제 운영 환경에서 어떻게 적용되는지, 세 가지 구체적인 예시를 통해 살펴보겠습니다. 구체적인 활용 가이드 ① 복잡한 네트워크 구성 한눈에 파악하기 일반적으로 네트워크 토폴로지는 조직 내부에서 보유한 구성도에 따라 수작업으로 구성되며, 이를 기반으로 주요 장비의 장애 상태를 모니터링합니다. 그러나 이러한 구성도가 오래되었거나 존재하지 않는 경우, 실제 네트워크 연결 구조를 정확하게 파악하기 어려운 경우가 많습니다. 이런 상황에서 LLDP 기반 오토맵 기능은 수집된 연결 정보를 바탕으로 자동으로 네트워크 구조를 시각화해줍니다. 운영자는 구성도 없이도 전체 네트워크 구성을 실시간으로 확인할 수 있으며, 각 장비 간의 물리적 관계를 직관적으로 파악할 수 있습니다. [네트워크 구성도 기반 구성한 토폴로지의 사례] 구체적인 활용 가이드 ② 연결 장비의 트래픽 정보 자동 확인하기 스위치 장비는 여러 개의 인터페이스를 통해 다양한 장비와 트래픽을 주고받습니다. 이러한 환경에서 각 인터페이스가 어떤 장비와 연결되어 있는지, 어떤 구간에 트래픽이 집중되고 있는지를 수작업으로 확인하는 것은 현실적으로 매우 어렵습니다. 특히 별도의 분석 도구나 관리 시스템이 없을 경우, 문제 발생 시 신속한 대응이 더욱 어려워집니다. Zenius LLDP 오토맵은 이러한 연결 정보를 자동으로 시각화할 뿐 아니라, 각 연결 구간의 인터페이스 트래픽 정보도 함께 표시합니다. 이를 통해 운영자는 트래픽이 집중되는 구간, 병목 현상이 발생할 수 있는 지점을 빠르게 확인하고 사전에 대응할 수 있습니다. [오토맵을 통한 연결 장비 트래픽 확인 사례] 구체적인 활용 가이드 ③ 인터페이스 장애 영향도 분석하기 오토맵을 통해 트래픽이 몰리는 특정 연결 구간을 식별한 이후에는, 해당 구간에 연결된 인터페이스의 상세 정보를 확인할 수 있습니다. 연결된 포트의 상태, 전송 속도(BPS/PPS), 최대 속도(Max Speed) 등 다양한 지표를 기반으로 문제의 원인을 보다 구체적으로 분석할 수 있습니다. 예를 들어, MainSwitch와 Switch755fa 간의 연결을 조회하면 MainSwitch의 gi4 포트를 통해 연결되어 있다는 점을 확인할 수 있고, 해당 포트의 트래픽 수치까지 함께 확인 가능합니다. 이를 통해 인터페이스 장애가 전체 네트워크에 미치는 영향도 보다 정확하게 판단할 수 있습니다. 구체적인 활용 가이드 ④ CDP, LLDP 연결정보 확인 하기 이뿐만 아니라, Zenius NMS는 Cisco 장비에서 제공하는 CDP(Cisco Discovery Protocol)와 LLDP 정보를 모두 지원합니다. 이를 통해 오토맵 구성 외에도 정적인 장비 연결 정보 점검이 가능하며, 다양한 환경에서 유연한 연결 정보 수집이 가능합니다. 운영자는 NMS > 모니터링 > 장비 > 대상 클릭 > 부가정보 메뉴를 통해 각 장비에 대한 CDP 및 LLDP 연결 정보를 확인할 수 있으며, 이를 통해 오토맵 구성 외에도 정적인 장비 연결 정보 확인 및 점검이 가능합니다. [NMS > 모니터링 > 장비 > 대상 클릭 > 부가정보 ] CDP, LLDP 정보 Zenius LLDP 오토맵 기능은 실제 운영 환경에서도 효과적으로 활용되고 있습니다. 예를 들어, B제약사는 주요 스위치를 제외한 장비의 연결 상태를 명확히 파악하기 어려운 상황에서 LLDP 기반 오토맵 도입을 요청한 고객사입니다. 특히 대부분의 장비가 Cisco가 아닌 타 벤더 장비로 구성되어 있어, 기존의 CDP 기반 구성으로는 한계가 있었습니다. 이에 따라 Zenius를 통해 LLDP 기반 웹 오토맵 기능이 POC 형태로 제공되어 실제 환경에 적용되었습니다. 도입 이후에는 기존에 파악되지 않았던 스위치 간 연결 관계와 인터페이스 수준의 상태까지 시각적으로 확인할 수 있게 되었고, 관리의 사각지대였던 영역도 체계적으로 관리할 수 있게 되었습니다. 이를 통해 B제약사는 운영 효율성과 문제 대응 속도를 동시에 개선할 수 있었습니다. LLDP 기반 오토맵은 단순히 장비 간 연결 상태를 보여주는 도구에 그치지 않습니다. 실제 환경에 적용해보면, 운영자가 놓치기 쉬운 연결 구조를 시각적으로 재구성하고, 네트워크 상의 다양한 상호작용을 보다 명확하게 이해하는 데 도움이 됩니다. 특히 장애나 트래픽 변화처럼 빠른 대응이 필요한 순간에는, 자동화된 시각 정보가 판단과 조치의 속도를 좌우할 수 있습니다. 인터페이스 수준의 상세 정보까지 함께 제공되기 때문에, 문제가 발생한 구간의 영향도를 실시간으로 파악하고, 사전에 우선 대응할 수 있는 근거도 마련됩니다. 도입 사례를 통해 확인할 수 있었듯이, 기존 관리 체계만으로는 파악하기 어려웠던 장비 간 연결이나 관리 사각지대 역시 오토맵을 통해 자연스럽게 드러나며, 운영 체계 전반의 신뢰성을 높이는 계기가 됩니다. 정적인 문서나 수작업 기반의 관리에서 벗어나, 실시간 연결 정보를 바탕으로 네트워크를 보다 직관적으로 운영하고자 한다면, LLDP를 기반으로 한 Zenius의 오토맵 기능을 통해 보다 효율적이고 안정적인 네트워크 운영 환경을 구축할 수 있습니다.
2025.06.04
기술이야기
효과적인 네트워크 성능 모니터링을 위한 4가지 핵심 지표
기술이야기
효과적인 네트워크 성능 모니터링을 위한 4가지 핵심 지표
현대 IT 인프라에서 네트워크는 모든 데이터의 흐름을 책임지는 중추적인 역할을 담당합니다. 네트워크 장비가 제대로 작동하지 않는다면, 서비스의 중단이나 성능 저하 문제로 이어질 수 있어 비즈니스의 연속성에 큰 영향을 미치는 요인이 되는데요. 이러한 문제를 예방하기 위해서는 네트워크 장비의 상태를 면밀히 모니터링하고, 이상 징후를 신속히 파악하는 것이 중요합니다. 그렇다면 어떤 네트워크 성능 지표를 확인해야 잠재적인 문제를 예측할 수 있을까요? │bps, pps : 데이터 속도와 트래픽 측정 단위 먼저 네트워크 성능 모니터링에서 기본적으로 활용되는 지표로는 bps와 pps가 있습니다. BPS와 bps는 초당 처리된 트래픽의 Byte와 bit입니다. BPS는 Byte per second의 약자로 초당 처리된 Byte를 말하며, 소문자로 표기된 bps는 bit per second의 약자로 초당 처리된 bit를 말합니다. Byte와 bit 중 더 큰 단위인 Byte를 사용하는 Byte per second가 주로 대문자로 표기됩니다. pps는 packet per second의 약자로 초당 처리된 패킷의 수입니다. 패킷의 크기는 최소 64 Byte에서 1,500 Byte까지도 될 수 있는데요. 그 이유는 하나의 패킷 내에 얼마나 큰 용량의 데이터가 담겨있느냐에 따라 1 패킷의 크기는 달라지기 때문입니다. bps와 pps는 데이터 전송량을 측정하는 지표로 네트워크 병목 현상이나 성능 저하가 발생했을 때 기본적인 원인 분석에 활용됩니다. 예를 들어 bps가 높다면 대역폭 문제를, pps가 높으면 네트워크 장비의 패킷 처리 능력을 의심해 볼 수 있습니다. 또한 두 지표의 트래픽 패턴을 분석하여 보안 위협을 조기에 발견할 수 있어, 네트워크 모니터링의 기본 지표로 활용됩니다. │Discard, Error : 네트워크 장비 장애인지와 밀접한 지표 다음으로 Discard와 Error는 네트워크에서 발생하는 장애를 분석하는 데 중요한 지표입니다. Discard는 네트워크 장비가 자원 관리와 트래픽 조절을 위해 의도적으로 발생시키는 값입니다. 즉 네트워크 장비의 트래픽 과부하, 큐 오버플로우, QoS 정책 등으로 인해 일부 패킷이 우선순위에 따라 의도적으로 버려지는 경우입니다. 이렇게 패킷을 의도적으로 버리는 이유는 버퍼와 같이 장비에 한정된 자원을 보호하기 위한 조치입니다. Error는 패킷이 손상되거나 잘못된 데이터로 인해 발생하는 오류입니다. 주로 물리적 연결 문제, 신호 간섭 CRC 오류 등 하드웨어 결함으로 인해 나타납니다. Error는 네트워크 안정성에 치명적일 수 있기 때문에, 발생 원인을 신속히 파악하고 물리적 문제를 해결하는 것이 중요합니다. │네트워크 핵심 지표를 효과적으로 확인하는 방법 앞서 설명한 BPS, bps, pps, Discard, Error와 같은 성능 지표를 통해 네트워크 관리자들은 문제 상황을 감지할 수 있습니다. 그러나 어느 지표에서 이상이 발생했는지, 그리고 여러 네트워크 장비 중 어떤 장비에 장애가 발생했는지를 신속하게 파악하는 것은 쉽지 않습니다. 이러한 이유로 많은 기업이 네트워크의 성능과 전체 상태를 직관적으로 파악할 수 있는 NMS(Network Management System) 도입을 검토하고 있는데요. NMS는 BPS, bps, pps, Discard, Error 등 주요 성능 지표는 물론, 네트워크 장비의 운영 현황을 다양한 뷰(View)를 통해 직관적으로 제공합니다. 또한 임계치 기반의 장애 감시 정책 설정과 다양한 분석 기능을 통해 장애 상황을 신속하게 감지하고 조치를 취할 수 있습니다. [그림1] Zenius NMS 전체 요약 View [그림2] 인터페이스 In/Out bps Top5 대표적인 예시로 Zenius NMS를 통해 살펴본다면, 전체 요약 View에서는 가장 높은 트래픽을 유발하는 인터페이스 및 장비별 In/Out BPS Top5를 제공해 네트워크 관리자들이 해당 장비와 인터페이스를 빠르게 식별할 수 있습니다. 이 외에도 자원 사용 현황, 점검 필요 여부, 이벤트 현황 등 네트워크 자원의 운영 상황을 한 화면에서 모니터링할 수 있어 관제의 효율성을 높일 수 있습니다. [그림3] 개별장비별 상세 요약 View 각 장비별 상세 요약 View에서는 인터페이스별 Up/Down 상태를 포트 색상과 점멸 효과로 직관적으로 확인할 수 있는데요. 트래픽이 몰리는 양에 따라 점멸이 빠르게 일어나 인터페이스가 원활하게 운영되는지 쉽게 파악할 수 있습니다. 또한 각 인터페이스의 성능 현황을 리스트 형식으로 확인할 수 있습니다. 성능 항목명을 클릭해 Top/Bottom 순으로 정렬할 수 있어 사용자 필요에 따라 유연하게 활용할 수 있습니다. [그림4] 감시 정책 설정 및 Zenius 스마트 진단 Zenius NMS는 감시 정책 설정을 통해 효과적인 장애 감지 기능을 제공하는데요. 이벤트를 감시할 시간, 요일, 심각도, 임계치 설정하여 정의된 항목에 따라 이벤트를 감시할 수 있습니다. 송수신 bps·pps, CPU·Mem 사용률, Discard, Error 같은 항목 이외에도 다양한 성능 항목을 감시할 수 있습니다. 특히 Discard와 Error 같은 주요 항목은 장비에 관련 감시설정이 등록되어 있지 않다면, 스마트 진단 기능을 통해 별도 설정 없이도 자동으로 감지 및 통보됩니다. 이러한 효과적인 장애 감지 기능은 네트워크 운영의 안정성을 크게 높여줍니다. [그림5] Topology Map 마지막으로 토폴로지 맵(Topology Map)에서는 네트워크 트래픽을 기반으로 IT 자원 간의 연결 상태와 운영 현황을 시각화합니다. 색상과 점멸 효과로 이벤트 발생 장비를 즉시 파악할 수 있으며, 트래픽 흐름을 통해 병목 구간을 효과적으로 모니터링할 수 있습니다. 이번 시간에는 네트워크 안정성을 위해 확인해야 하는 주요 성능 지표와 NMS 솔루션을 활용한 효과적인 모니터링 방법을 알아보았습니다. 빠른 장애 감지와 안정성 강화를 지원하는 Zenius NMS와 같은 네트워크 관리 솔루션을 통해 네트워크를 안정적으로 관리하시기 바랍니다!
2024.11.15
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
기술이야기
네트워크 모니터링의 4가지 최신 트렌드
클라우드와 엣지 컴퓨팅의 확산, 동영상/음악/게임 분야의 스트리밍 서비스의 성장 등으로 인해 네트워크 인프라는 점점 더 복잡해지고 있으며, 데이터 트래픽 또한 폭발적으로 증가하고 있습니다. 또한 DDoS(Distributed Denial of Service)나 스니핑(Sniffing) 공격과 같은 보안 위협도 확산되고 있습니다. 따라서 네트워크 성능을 안정적으로 유지하고 잠재적인 위협에 빠르게 대응하기 위한 네트워크 모니터링의 중요성이 더욱 커지고 있습니다. 한 조사에 따르면 네트워크 모니터링 시장 규모가 올해 29억 1천만 달러에 이른 후, 4년간 연평균 성장률(CARG) 9.7%를 기록하며 2028년에는 42억 1천만 달러까지 확대될 전망입니다. IT 기술과 서비스의 발전에 따라서 네트워크 모니터링은 구체적으로 어떻게 변화하고 있는지 네 가지로 나눠서 살펴보겠습니다. [1] 멀티 클라우드 환경에서의 네트워크 모니터링 벤더 종속성을 피하고 비용을 줄이며, 서비스의 성능을 높이기 위해 멀티 클라우드 전략이 많이 채택되고 있습니다. 하지만 멀티 클라우드를 구성하는 각 클라우드 서비스마다 네트워크 아키텍처와 성능이 다르기 때문에 안정적으로 네트워크를 관리하는 데에는 많은 어려움이 따르는 것도 사실입니다. 이러한 어려움을 극복하고, 멀티 클라우드의 운영 효율을 최대한 높이기 위한 네트워크 모니터링의 최근의 추세를 살펴보겠습니다. 가시성 높은 통합 대시보드를 통한 관리 복잡한 멀티 클라우드 환경에서 네트워크를 효율적으로 관리하기 위한 가시성 높은 통합 대시보드의 활용이 증가하고 있습니다. 통합 대시보드는 여러 클라우드에 걸쳐 발생하는 트래픽 흐름, 대역폭 사용량, 그리고 네트워크 성능 지표를 한 눈에 보기 쉽게 제공합니다. 이를 통해 관리자가 각 클라우드 서비스 간의 네트워크 상태를 실시간으로 쉽게 파악하고 문제에 빠르게 대응할 수 있게 돕고 있습니다. 특히, 통합 대시보드는 네트워크 토폴로지 맵과 성능 히트맵과 같은 세부적인 기능을 통해, 복잡하게 얽힌 클라우드 간의 트래픽 흐름을 직관적으로 분석할 수 있도록 지원하고 있습니다. 이를 통해 멀티 클라우드의 각 경로에서 발생할 수 있는 트래픽 불균형이나 병목 현상을 신속하게 감지하고 조정할 수 있습니다. 이와 더불어서 관리자가 자신이 중점적으로 모니터링해야 하는 지표들을 쉽게 확인할 수 있도록, 통합 대시보드의 관리자별 맞춤 설정 기능도 강화되고 있습니다. 이를 통해 관리자는 복잡한 멀티 클라우드 환경에서도 하나의 화면에서 리전별 트래픽, 네트워크 지연시간, 패킷 손실율 등 본인이 원하는 부분에 초점을 맞춰서 효율적으로 네트워크를 모니터링 할 수 있습니다. AI와 머신러닝을 통한 자동화된 분석 및 대응 AI와 머신러닝 기술이 적용된 네트워크 모니터링 시스템도 멀티 클라우드 운영 효율을 높이는데 크게 기여하고 있습니다. 우선 멀티 클라우드 환경의 네트워크는 멀티 클라우드 환경은 다양한 변수로 인해 네트워크 문제가 예측 불가능한 경우가 많습니다. 따라서 AI와 머신러닝 기술은 클라우드 간의 네트워크 상관관계, 트래픽 패턴, 대역폭 사용량, 성능 지표를 등을 학습하여 성능 저하나 장애의 잠재적 원인을 탐지하고 빠르게 알리고 있습니다. 또한 AI를 통해 실시간 트래픽 경로 분석하여 병목 현상이 발생하거나 리소스가 과도하게 사용될 경우 동적으로 VLAN 설정을 변경하거나, 트래픽을 다른 클라우드 인스턴스로 우회시키는 등의 자동화된 대응도 강화되고 있습니다. 이와 함께 네트워크 트래픽의 실시간 변화에 맞춰 QoS(서비스 품질) 정책을 자동으로 조정하여 중요한 애플리케이션에 우선순위를 부여하고, 비정상적인 트래픽을 즉시 차단하거나 제한하는 등의 대응도 자동으로 수행할 수 있습니다. 이 같은 자동화된 조치는 네트워크의 가용성을 높이고, 관리자의 개입 없이도 실시간으로 문제를 해결할 수 있어, 멀티 클라우드 환경에서의 네트워크 성능과 안정성을 높이고 있습니다. 시스템의 확장성 및 유연성 강화 멀티 클라우드 환경에서는 클라우드 리소스가 추가되거나 기존 리소스가 제거되면서, 네트워크의 구성과 요구사항이 빠르게 변동됩니다. 따라서 높은 유연성을 바탕으로 빠르게 변화하는 네트워크 환경에 신속하게 대응하는 것이 네트워크 모니터링 시스템의 중요한 요소로 자리잡았습니다. 구체적으로, 네트워크 모니터링 시스템을 통해 멀티 클라우드 인프라 내에서 새롭게 배포되는 서버나 애플리케이션을 자동으로 감지하고 이를 실시간으로 모니터링할 수 있는 것이 중요해지고 있습니다. 또한, 동적인 멀티 클라우드 환경에서 관리자가 특정 클라우드 서비스나 리소스에 맞춤형 모니터링 설정을 유연하게 적용할 수 있는 기능이 중요해지고 있습니다. 예를 들어, 새로운 클라우드 환경의 네트워크를 모니터링할 때, 해당 환경에 맞춘 모니터링 템플릿을 유연하게 구성하고 배포할 수 있는 기능이 점점 더 중요해지고 있습니다. 이러한 유연한 모니터링 시스템은 멀티 클라우드 인프라의 복잡성을 효과적으로 관리하고 운영 효율성을 높이는 데 중요한 역할을 하고 있습니다. 규정 준수 및 거버넌스 모니터링 멀티 클라우드 환경에서는 다양한 국가와 지역의 규제를 준수해야 합니다. 따라서 네트워크 모니터링 시스템은 네트워크 트래픽, 접근 로그, 보안 이벤트 등을 실시간으로 모니터링하여 잠재적인 규정 위반을 탐지하고 사전에 인지할 수 있도록 지원하고 있습니다. 특히 규정 준수(Compliance) 모니터링은 멀티 클라우드 환경에서 필수적입니다. 예를 들어, 한 클라우드가 유럽에 위치하고 있어 GDPR(유럽 일반 데이터 보호 규정)을 준수해야 하고, 다른 클라우드는 미국의 규제에 따라야 할 때, 네트워크 모니터링 시스템을 통해 각 클라우드에서 발생하는 네트워크 트래픽, 보안 이벤트와 접근 로그를 추적하고, 잠재적인 규정 위반을 사전에 탐지할 수 있도록 지원하고 있습니다. 또한, 거버넌스 모니터링 측면에서는 클라우드 간의 데이터 관리와 접근 통제 정책이 일관되게 적용되도록 지원합니다. 멀티 클라우드 환경에서는 다양한 클라우드 제공자 간에 민감한 데이터가 이동할 수 있기 때문에, 데이터 접근 권한을 관리하고 비인가된 접근 시도를 실시간으로 감시하는 기능이 필수적입니다. 이를 통해 기업은 데이터 유출 위험을 줄이고, 여러 규제와 거버넌스 요구 사항을 준수할 수 있습니다. [2] SDN(소프트웨어 정의 네트워킹) 모니터링 SDN(Software-Defined Networking)은 네트워크를 더 쉽게 관리할 수 있도록 설계된 기술입니다. 전통적인 네트워크는 스위치나 라우터 같은 네트워크 하드웨어 장치가 데이터의 전달 경로와 방식을 스스로 결정했습니다. 하지만 각 장비가 독립적으로 작동하다 보니 네트워크 설정을 변경하는 데 시간이 많이 걸렸고, 특히 대규모 네트워크를 통합적으로 관리하는 데 어려움이 있었습니다. 반면, SDN에서는 소프트웨어 기반의 중앙 컨트롤러(제어 평면, Control Plane)가 데이터의 전달 경로와 방식을 통합하여 결정하고 하드웨어 장치들은 이 결정에 따라 데이터를 전송하는 역할만 수행합니다. 따라서 네트워크 구성을 변경하거나 최적화하기가 쉽고, 대규모 네트워크도 효율적으로 관리할 수 있는 장점이 있습니다. 하지만 동시에 중앙 컨트롤러에 장애가 발생하거나 해킹을 당할 경우 네트워크 전체가 마비될 수 있는 위험이 있으며, 실시간으로 네트워크 상태를 모니터링하고 분석하는 것이 어려운 단점도 존재합니다. 따라서 네트워크 모니터링 시스템은 SDN의 단점을 보완하고 장점을 강화하는 방향으로 발전하고 있습니다. 실시간 데이터 수집 및 분석 실시간 데이터 분석은 네트워크 환경이 계속해서 변화하는 SDN의 특성상 매우 중요합니다. 특히 SDN에서는 스위치, 라우터, 케이블 등 네트워크 하드웨어 장치들이 정상적으로 작동하고 연결된 상태를 나타내는 '물리적 상태'와, 중앙 컨트롤러가 설정한 네트워크 경로와 적용된 정책을 의미하는 '논리적 상태'를 모두 실시간으로 정확하게 모니터링해야 합니다. 네트워크 모니터링 시스템은 이러한 물리적 상태와 논리적 상태를 추적하기 위해, 네트워크 지연 시간, 트래픽 흐름, 패킷 손실, 대역폭 사용량, 링크 상태와 같은 다양한 성능 지표를 실시간으로 수집하고 분석하는 기능을 강화하고 있습니다. 이러한 분석을 통해 네트워크 관리자가 잠재적인 문제나 성능 저하를 조기에 감지하여, 심각한 문제가 발생하기 전에 조치할 수 있도록 돕고 있습니다. 빠르고 자동화된 대응 지원 네트워크 모니터링 시스템은 네트워크 주요 데이터에 대한 수집과 분석에서 그치지 않고, SDN의 컨트롤러와 연계하여 빠르고 자동화된 대응을 지원하고 있습니다. 예를 들어, 특정 시간대에 트래픽이 과도하게 증가하면, 모니터링 시스템이 이를 실시간으로 탐지하고 SDN 컨트롤러를 통해 특정 트래픽을 다른 경로로 자동 분산시킵니다. 링크 장애가 발생하면 모니터링 시스템은 즉시 대체 경로를 설정하여 트래픽이 끊기지 않도록 조치하며, 문제가 해결되면 다시 원래의 경로로 트래픽을 재배치하는 자동 복구 기능을 수행합니다. 이처럼 네트워크 모니터링 시스템과 SDN 컨트롤러와의 연계를 통해 네트워크 운영자의 개입 없이도 스스로 문제를 해결하는 능력이 더욱 진화할 것으로 기대되고 있습니다. 보안이 강화된 모니터링 앞서 살펴본대로 SDN은 네트워크 제어를 중앙집중식으로 처리하는 구조적 특성을 가지고 있기 때문에, 중앙 컨트롤러의 보안이 매우 중요합니다. 따라서 SDN 환경에서 네트워크 모니터링 시스템은 다양한 잠재적인 보안 위협을 사전에 감지하고, 신속하게 대응할 수 있는 강화된 보안 기능을 필수적으로 갖춰가고 있습니다. 예를 들어 네트워크 상에서 발생하는 다양한 이벤트를 실시간으로 감시하고 분석하여, 비정상적인 트래픽 흐름, 의심스러운 로그인 시도, 네트워크 장치 간의 비정상적인 통신 행위 등에 대한 탐지가 가능합니다. 또한 보안을 강화하기 위해서 네트워크 모니터링 시스템과 SIEM(보안 정보 및 이벤트 관리 시스템), IPS(침입 방지 시스템), IDS(침입 탐지 시스템)의 통합이나 연계도 활발하게 이루어지고 있습니다. 분산형 SDN 컨트롤러 모니터링 SDN 환경에서 중앙 컨트롤러 하나에 의존하는 방식의 리스크를 줄이기 위해, 많은 네트워크 운영자들이 분산형 SDN 컨트롤러 아키텍처를 채택하고 있습니다. 분산형 컨트롤러는 각기 독립적으로 운영되면서도 상호 간에 정보와 상태를 동기화하여 안정적인 네트워크 운영이 가능합니다. 따라서 최근 네트워크 모니터링 시스템은 각 컨트롤러의 상태와 성능을 실시간으로 추적하고, 컨트롤러 간 협력 상태를 감시하여 과부하나 장애 발생 시 즉시 다른 컨트롤러로 트래픽을 자동 분산하거나 대체 컨트롤러를 할당하는 기능을 지원하고 있습니다. 또한, 분산된 컨트롤러 간의 상태 동기화 여부를 실시간으로 확인하여, 동기화 문제로 인한 비효율적인 경로 설정이나 보안 취약점을 방지하고, 문제 발생 시 즉각적인 경고 및 자동 수정 기능을 제공합니다. 장애 복구와 복원 기능 또한 필수적으로 강화되어, 장애 발생 시 대체 컨트롤러가 즉각적으로 운영을 이어받고, 문제가 해결된 후에는 트래픽을 원래 컨트롤러로 복원하는 기능도 제공하고 있습니다. [3] 엣지컴퓨팅 환경의 네트워크 모니터링 엣지 컴퓨팅(Edge Computing)은 데이터를 중앙의 대형 데이터센터나 클라우드 서버에서 처리하는 기존 방식과 달리, 데이터를 생성하는 디바이스나 그와 가까운 위치에서 처리하는 기술입니다. 예를 들어 스마트폰, IoT 기기, 자율주행차, 또는 공장 내의 다양한 장비들이 데이터를 스스로 처리하고, 필요한 경우에만 중앙 서버나 클라우드로 데이터를 전송하는 방식입니다. 네트워크 대역폭을 절약할 수 있고, 빠른 서비스 제공이 가능해서 다양한 분야에서 활용이 증가하고 있습니다. 엣지 디바이스들이 데이터를 처리하는 위치가 분산되어 있고, 시스템이 유연하게 확장될 수 있기 때문에, 이러한 환경에 맞춰 각 디바이스와 네트워크의 상태를 실시간으로 모니터링할 수 있는 엣지컴퓨팅 맞춤형 네트워크 모니터링이 필요합니다. 엣지 노드별 모니터링 엣지 컴퓨팅 환경에서는 엣지 노드에서 발생하는 데이터를 실시간으로 정확하게 감지하고 관리해야 합니다. 따라서 네트워크 모니터링 시스템은 각 엣지 노드에 경량화된 에이전트를 배치하거나 에이전트리스 모니터링 방식 등을 활용하여 모니터링을 진행합니다. 이를 통해 엣지 노드의 주요 상태(네트워크 대역폭 소비, 지연 시간 등)를 정확히 분석하고, 비정상적인 상태를 감지하면 중앙 서버에 즉시 알림을 보내고 있습니다. 이때 엣지 노드에서 생성되는 모든 데이터를 중앙 서버로 전송하는 것은 네트워크 대역폭에 큰 부담을 줄 수 있습니다. 따라서 네트워크 모니터링 시스템은 데이터 샘플링을 통해 필수적인 데이터를 효율적으로 선택하고, 데이터 필터링을 통해 불필요한 데이터를 제거하고 전체 네트워크의 부하를 줄이면서 성능을 최적화할 수 있도록 돕고 있습니다. AI/ML 기반의 자동화된 대응 엣지 컴퓨팅의 특성상 문제 발생 시 네트워크 운영자가 모든 노드에 직접 접근해 수동으로 대응하는 것이 현실적으로 어렵습니다. 따라서 운영자의 개입 없이도 엣지 디바이스가 문제를 자율적으로 감지하고 해결할 수 있는 자동화된 대응 시스템이 중요합니다. 네트워크 모니터링 시스템에도 자동화된 대응 기능이 강화되고 있습니다. 자동화된 대응 시스템은 네트워크 모니터링과 관리의 자동화를 통해 분산된 엣지 노드에서 발생하는 문제를 실시간으로 감지하고, 즉각적인 대응을 가능하게 합니다. 특히 AI 및 ML 기술이 이러한 자동화된 대응 시스템의 핵심 기술로 작용하고 있습니다. 예를 들어 정상적인 트래픽 흐름과 비정상적인 트래픽 흐름을 구분하기 위해 각 노드의 트래픽 데이터를 분석하여, 평상시 패턴과 다른 변화를 신속히 감지하고, 이때 이상 징후가 발견되면 트래픽 차단, 리소스 재분배, 또는 네트워크 경로 변경 등의 대응 조치를 자동으로 실행함으로써 네트워크 전체의 안정성을 높이고 있습니다. 확장에 대한 원활한 지원 5G 네트워크의 확산과 IoT 디바이스의 확산등으로 엣지 노드의 수가 폭발적으로 증가하면서 각 노드에서 생성되는 데이터의 양도 기하급수적으로 늘어나고 있습니다. 이러한 환경에서 네트워크 모니터링 시스템은 더 많은 노드를 빠르고 효율적으로 처리할 수 있는 능력을 가져야 하며, 노드 간 상호 연결성을 포함해 분산된 네트워크 전반에 걸쳐 일관된 성능을 유지해야 합니다. 이를 위해 네트워크 모니터링 시스템은 새로운 엣지 노드가 네트워크에 추가될 때마다 별도의 수작업 설정 없이 자동으로 노드를 인식하고, 모니터링을 즉시 시작할 수 있도록 기능이 강화되고 있습니다. 또한 자동 스케일링 기능을 통해 엣지 노드가 증가하면 모니터링 시스템의 리소스를 동적으로 확장하여, 성능 저하 없이 모든 노드를 관리하고 모니터링할 수 있도록 지원하고 있습니다. [4] 네트워크 보안 강화 네트워크 모니터링 분야에서 '보안'은 항상 중요한 주제였지만, 최근 IT 기술의 발전과 빈번한 보안사고 등으로 인해 그 중요성이 더 커지고 있습니다. 네트워크 보안 강화와 관련한 주요 이슈들을 살펴보겠습니다. 제로 트러스트(Zero Trust) 보안 모델의 확산 "절대 신뢰하지 말고, 항상 검증하라"는 원칙에 기반한 제로 트러스트 보안 모델은 내부와 외부를 구분하지 않고, 모든 사용자와 장치의 접근을 철저히 검증하는 접근법입니다. 클라우드 서비스의 확산으로 인해 기업 네트워크의 경계가 모호해지면서 더욱 중요해지고 있습니다. 제로 트러스트 모델을 올바르게 구현하기 위해서는 네트워크의 모든 트래픽을 실시간으로 모니터링하고 비정상적인 활동을 자동으로 탐지하고 즉각적으로 대응할 수 있는 시스템이 필요합니다. 이는 기존 보안 시스템이 단순히 알려진 위협을 차단하는 것에 그쳤다면, 제로 트러스트 모델에서는 잠재적인 위협까지도 감지하고 대응할 수 있어야 한다는 것을 의미합니다. 이를 위해, 최근 네트워크 모니터링 시스템은 AI 기술을 활용하여 자동으로 이상 징후를 탐지하고, 보안 위협에 신속하게 대응하는 능력을 강화하고 있습니다. 예를 들어, AI 기반 모니터링 시스템은 평소와 다른 사용자 행동 패턴을 감지하고, 이를 바탕으로 잠재적인 보안 위협을 조기에 차단하고 있습니다. SASE(Secure Access Service Edge)의 부상 SASE는 네트워크와 보안 기능을 통합하여 클라우드 환경에서 제공하는 혁신적인 보안 모델입니다. VPN, 방화벽, 침입 탐지 시스템, 데이터 손실 방지 등을 하나의 통합 솔루션으로 제공하며, 특히 외부에서 중앙 데이터센터로의 안전한 접근을 보장하는 데 최적화되어 있습니다. SASE는 전통적인 네트워크 보안 솔루션이 클라우드 환경에서 가지는 한계를 극복하고, 어디서든 동일한 보안 수준을 유지할 수 있게 하는 장점이 있습니다. SASE의 핵심은 네트워킹과 보안 기능을 통합하여, 기업이 네트워크와 보안을 하나의 솔루션으로 관리할 수 있도록 하는 것입니다. SASE를 도입하면 방화벽, 클라우드 접근 보안 브로커(CASB), 보안 웹 게이트웨이(SWG) 등 다양한 보안 기능을 단일 플랫폼에서 통합 관리할 수 있어, IT 팀이 더 효율적이고 일관된 보안 정책을 실행할 수 있습니다. 또한, SASE는 네트워크 모니터링 시스템을 진화시켜, 다양한 보안 기능(예: 방화벽, CASB, 보안 웹 게이트웨이 등)을 실시간으로 모니터링하고 관리할 수 있게 합니다. 이를 통해 네트워크 가시성을 높이고, 비정상적인 활동에 대한 즉각적인 대응이 가능해지며, 궁극적으로 조직의 보안을 강화하고 있습니다. XDR(Extended Detection and Response) 도입 XDR은 전통적인 EDR(Endpoint Detection and Response)을 확장하여, 네트워크, 엔드포인트, 서버, 클라우드 환경 등에서 발생하는 보안 위협을 통합적으로 탐지하고 대응하는 기술입니다. XDR은 다양한 보안 도구와 데이터를 통합하여 상관관계를 분석함으로써, 보안 운영 팀이 위협을 보다 쉽게 이해하고 신속하게 대응할 수 있도록 지원하기 때문에 많은 주목을 받고 있습니다. XDR을 활용하려면 상당한 초기 비용이 들고 관리에 어려움이 있기 때문에 많은 기업들이 XDR 전문 관리 솔루션을 도입하고 있습니다. 이에 따라 네트워크 모니터링 시스템도 단순히 네트워크 트래픽을 모니터링하는 것에서 나아가, XDR 전문 관리 솔루션과의 긴밀한 협력을 통해 통합된 보안 운영과 모니터링을 서비스로 제공하는 방향으로 발전하고 있습니다. 예를 들어, 기업은 네트워크 모니터링 시스템을 통해 다양한 보안 데이터를 실시간으로 수집하고 분석하며, 이를 XDR 솔루션과 통합하여 종합적인 보안 상태를 한눈에 파악할 수 있습니다. 이로 인해 보안 위협에 대한 대응 속도를 높이고, 더욱 정교한 보안 전략을 구현할 수 있게 됩니다. 멀티 클라우드와 SDN, 엣지 컴퓨팅 환경에서 네트워크 모니터링은 가시성, 유연성, 그리고 자동화된 대응 능력을 갖춘 시스템으로 진화하고 있습니다. 특히 AI와 머신러닝 기술을 활용한 자동화된 분석은 네트워크 성능 저하나 장애를 사전에 예측하고 대응하는 데 중요한 역할을 합니다. 기술의 발전에 맞추어 발전하는 네트워크 모니터링 시스템의 사용을 통해 기업은 더욱 복잡해지는 네트워크 환경에서 잠재적 위협을 신속히 탐지하고 대응할 수 있습니다.
2024.09.23
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
기술이야기
WAS(웹 애플리케이션 서버) 성능, APM을 통해 최적화하는 법
WAS(Web Application Server)는 현대 기업들이 운영하는 다양한 웹 애플리케이션이 원활하고 안정적으로 작동하도록 돕는 핵심 인프라입니다. 온라인 쇼핑몰, 인터넷 뱅킹, 병원 정보 시스템 등, 일상생활에서 자주 접할 수 있는 부분에서 WAS의 역할이 두드러지게 나타나죠. 대표적으로 온라인 쇼핑몰을 예를 들어 볼까요? 블랙프라이데이와 같은 쇼핑 성수기에는 많은 사람들이 동시에 웹사이트에 접속하기 때문에, 서버에 큰 부담이 생깁니다. 이때 WAS는 부하 분산 기능과 세션 관리를 통해 이런 부담을 효과적으로 나누어 처리하고, 각 사용자의 접속 상태를 잘 관리하여 웹사이트가 원활하게 작동하도록 돕는데요. 만약 WAS가 제대로 작동하지 않으면 웹사이트가 느려지거나 접속이 되지 않아 고객들이 불편을 겪고, 결국 매출 손실로 이어질 수도 있습니다. 이러한 이유들로 인해 WAS를 안정적으로 운영하기 위해서는 APM(Application Performance Management)이 필요합니다. APM은 애플리케이션 성능을 실시간으로 모니터링하고, 최적화하며, 성능 저하나 장애를 사전에 예방할 수 있도록 도와주는 시스템을 의미하는데요. 그렇다면 APM을 통해 어떤 방식으로 WAS를 관리할 수 있을까요? │APM으로 WAS(Web Application Server)를 관리하는 방법 우선 첫 번째로는, WAS에서 실행 중인 애플리케이션을 실시간으로 모니터링할 수 있습니다. 즉 WAS에서 실행 중인 애플리케이션이 제대로 작동하는지 실시간으로 확인할 수 있어, 문제가 발생해도 신속하게 해결할 수 있도록 도와주죠. [그림] Zenius APM : 실시간 모니터링 상황판 Zenius APM을 통해 자세히 살펴볼게요. Zenius APM은 한 화면에서 전체 또는 인스턴스 별로 수행되고 있는 트랜잭션의 처리 현황을 종합적으로 파악할 수 있는데요. 서버의 상태와 애플리케이션 성능이 정상적으로 작동하는지 한눈에 확인할 수 있고, 문제가 발생할 경우 빠르게 대응할 수 있습니다. • • • • • • 두 번째로는, 애플리케이션의 서비스가 지연되는 현황을 확인할 수 있습니다. 사용자 웹 페이지가 느려지면, 지연 원인을 빠르게 파악하고 조치해야 하기 때문에 이러한 문제를 직관적으로 파악할 수 있어야 합니다. [그림] Zenius APM : 액티브 서비스 모니터링 Zenius APM을 통해 살펴보면 액티브 서비스 처리 현황을 확인할 수 있습니다. 이 현황을 통해 스피드 메타 차트를 통해 전체 실시간 트랜잭션 유입량과 처리 상태, 그리고 서비스 지연 여부를 확인할 수 있는데요. 사용자의 웹 페이지가 느려질 경우 위 그림처럼 빨간 표기로 지연된 부분을 파악할 수 있습니다. [그림] Zenius APM : 액티브 서비스 현황 모니터링 만약 처리가 지연되고 있다면 인스턴스, 액티브 서비스 현황 차트를 통해 보다 명확하게 확인할 수 있습니다. 위 그림과 같이 이퀄라이저 차트에서 주황색 또는 붉은색으로 표시된 부분을 통해, 인스턴스에서 발생한 잠재적인 문제를 확인할 수 있죠. 이렇게 지연된 서비스가 발견된 인스턴스에서 처리 중인 트랜잭션 목록을 확인할 수 있습니다. 또한 지연된 트랜잭션이 어느 단계에서 멈춰 있는지도 파악할 수 있습니다. [그림] Zenius APM : 서비스 응답 분포 및 트랜잭션 상세 모니터링 처리 완료된 트랜잭션의 지연 구간은 서비스 응답 분포를 통해 확인할 수 있으며, 이슈 정보를 통해 좀 더 상세한 지연 위치를 알 수 있습니다. • • • • • • 세 번째는, 과거 장애 시점에 대한 정밀한 장애 원인을 분석할 수 있습니다. 이 기능은 장애 재발을 막고 시스템의 안정성을 높이기 위해 중요한 부분인데요. [그림] Zenius APM : 스냅샷 분석 예시를 통해 자세히 알아보겠습니다. Zenius APM과 같은 APM 솔루션은 장애 시점에 대한 정보를 스냅샷을 통해 과거 실시간 상황을 동일하게 재현하여, 당시의 시스템 상태와 성능을 정확히 파악할 수 있게 도와줍니다. 또한 모든 세부 정보를 포함한 Raw 데이터를 기반으로 하는데요. 과거 시점에 장애 원인 분석을 보다 정밀하게 파악할 수 있어, 장애 재발을 방지하고 시스템 안정성을 확보할 수 있습니다. • • • • • • 지금까지 APM을 통해 어떻게 WAS를 관리하는지 살펴보았습니다. 하지만 여기서 한 가지 더 알아야 할 것은, 애플리케이션 성능 저하가 WAS만의 문제는 아니라는 점입니다. CPU, 메모리, 디스크 I/O 등 서버 자원의 부족이나 데이터베이스 쿼리 성능 저하 등 다양한 원인에 의해 발생할 수도 있죠. 따라서 이러한 모든 요소들을 종합적으로 모니터링하는 것이 중요한데요. 이러한 요구를 해결하기 위해 Zenius APM은 서버와 데이터베이스를 자동으로 매핑하여 연관 관계를 시각적으로 확인할 수 있는 '토폴로지 맵'을 제공합니다. 이를 통해 애플리케이션 성능 저하가 서버 자원의 부족 때문인지, 데이터베이스 쿼리 성능 저하 때문인지 명확히 파악할 수 있습니다. 이번 시간에는 APM으로 WAS를 어떻게 관리하는지 알아보았습니다. 결론적으로 기업에서 안정적이고 신뢰할 수 있는 웹 애플리케이션 환경을 구축하기 위해서는, APM은 더 이상 선택이 아닌 필수입니다. 이제 Zenius APM을 통해 WAS 관리를 효과적으로 관리하여, 최적의 웹 애플리케이션 성능을 유지해 보세요! ?더보기 Zenius APM으로 WAS 관리하기 ?함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은? • 오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
2024.07.29
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
기술이야기
CMS로 클라우드 서비스 효율적으로 관리하는 3가지 방법
오늘날 많은 기업들이 AWS, 구글, 마이크로소프트 등의 클라우드 서비스를 적극 활용하고 있습니다. 클라우드 서비스는 데이터의 안정성과 가용성을 보장하고, 비용을 절감하며, 자원을 최적화하는 등 다양한 이점을 제공하기 때문인데요. 2024년 클라우드 서비스 시장 전망도 매우 밝습니다. 시장조사기관에 따르면 2024년 클라우드 시장 규모는 약 727.9억 달러에 이를 것으로 예상됩니다. 2023년과 대비하면 16.2% 증가한 수치이죠. 하지만 클라우드 서비스의 이용률이 증가하고 클라우드 인프라가 복잡해짐에 따라, 체계적이고 효율적인 클라우드 관리가 필요한데요. 클라우드 환경에서는 사용한 만큼 비용을 지불하기 때문에 자원을 효율적으로 관리할 수 있어야 하며, 실시간으로 이상 징후를 감지하여 보안을 강화할 수 있는 시스템이 필요합니다. 이러한 관리를 가능하게 해주는 시스템이 바로 CMS(Cloud Service Management System)입니다. 그래서 이번 시간에는 대표적인 CMS 솔루션인 Zenius CMS 사례를 통해, 클라우드 서비스를 관리하는 방법을 자세히 살펴보겠습니다. │CMS를 이용해 클라우드 서비스 관리하는 법 실시간 성능 모니터링 우선 클라우드 서비스 관리를 할 때 꼭 확인해야 할 첫 번째는, 클라우드 서비스의 세부 성능을 실시간으로 모니터링할 수 있어야 합니다. 클라우드 환경에서는 작은 문제가 큰 장애로 이어질 수 있기 때문에, 실시간 모니터링을 통해 이상 징후를 빠르게 감지하고 대응할 수 있어야 하죠. [그림] (왼)AWS EC2 (오)AWS EBS 좀 더 이해하기 쉽게 Zenius CMS를 통해 살펴볼게요. Zenius CMS는 각 서비스에 맞는 주요 지표를 상세히 모니터링할 수 있도록 해줍니다. 예를 들어 AWS EC2와 EBS에서 제공하는 서비스에 맞춰 각각의 구성과 성능 정보를 수집하여, 실시간 모니터링이 가능하죠. [그림] (왼)Amazon Billing, (오)Amazon VPC 특히 과금 정보를 실시간으로 모니터링할 수 있는 AWS Billing을 통해, 지출 현황을 직관적으로 파악하고 관리할 수 있도록 도와줍니다. 클라우드에서 네트워크를 분리하고 안정하게 관리할 수 있는 VPC(Virtual Private Cloud) 서비스에 대한 상세한 정보도 제공해 주죠. 서비스마다 다른 차트와 그래프를 시각화해서 보여주기 때문에, 직관적으로 확인할 수 있습니다. [그림] (왼) 관심 서비스 그룹 모니터링 (오) 서비스 그룹 별 대상/항목 설정 또한 Zenius-CMS는 클라우드와 연관된 서비스와 특성에 맞게 그룹핑하여, 한 화면에서 성능 비교를 분석할 수 있습니다. 서비스 그룹 별 대상이나 항목 설정을 할 때도 유용하죠. 클라우드 인프라 구성 시각화 클라우드 서비스 관리를 할 때 꼭 확인해야 할 두 번째는, 복잡한 클라우드 환경을 한눈에 파악할 수 있어야 합니다. 다양한 클라우드 인프라의 복잡한 구성과 서비스 간의 연결 구조를 시각적으로 보여줘야 하죠. 이는 문제 발생 시 신속하게 원인을 파악할 수 있고 해결할 수 있기 때문이죠. [그림] 클라우드 서비스 맵 Zenius CMS를 통해 다시 한번 살펴볼게요. Zenius CMS는 구성도를 자동으로 생성하여, 클라우드 서비스 맵을 쉽게 확인할 수 있습니다. 현재 사용하고 있는 각 계정에 연결된 클라우드의 구성 현황을 한눈에 파악할 수 있습니다. 또한 이러한 Map 구성을 직접 편집할 수도 있는데요. 손쉬운 Map 구성 편집을 위한 아이콘, 이미지, 폰트 등 다양한 기능을 제공하고 있습니다. 이를 통해 클라우드 환경의 복잡한 구성을 쉽게 이해하고 관리할 수 있습니다. 중앙 통합 관리 시스템 CMS로 클라우드 서비스 관리를 할 때 꼭 확인해야 할 세 번째는, 다양한 클라우드 서비스를 중앙에서 통합 관리할 수 있어야 합니다. 각 서비스의 상태의 성능을 한곳에서 모니터링하고 관리할 수 있어, 관리의 편의성과 효율성이 크게 향상되기 때문인데요. [그림] 하이브리드 토폴로지 맵 Zenius CMS는 클라우드와 온프레미스 환경(On-Premise)을 통합하여 모니터링이 가능합니다. 이 시스템은 AWS, Azure, GCP 등 멀티 클라우드 서비스의 구성/성능/장애 정보를 직관적으로 모니터링할 수 있죠. 이를 통해 전체 인프라의 연관 관계와 상태를 직관적으로 파악할 수 있습니다. [그림] 오버뷰 또한 Zenius CMS는 사용자의 관점에 맞게 클라우드 서비스를 한 화면에 구성하여 관리할 수 있습니다. 사용자의 운영 목적이나 환경에 맞춰, 클라우드 서비스 현황/관련 지표/이벤트/토폴로지 등 선택적으로 구성할 수 있습니다. 이를 통해 클라우드 환경을 보다 효율적으로 운영할 수 있죠. 이번 시간에는 CMS 도구를 활용해, 클라우드 서비스 관리 방법을 알아보았습니다. 앞으로 클라우드 서비스는 기업에서 더욱 필수적이며, 그 수요는 지속적으로 증가할 것입니다. 이제는 클라우드 자원을 효율적으로 운영하고 다양한 클라우드 환경에서도 통합 관리할 수 있는 Zenius CMS를 통해 효과적으로 관리해 보세요! ?더보기 Zenius CMS로 효율적으로 클라우드 관리하기
2024.07.28
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
기술이야기
오픈소스 APM만으로 완벽한 웹 애플리케이션 관리, 가능할까?
지난 글을 통해 옵저버빌리티(Observability) 중요성과 APM 차이점을 자세히 살펴보았습니다(자세히 보기). 옵저버빌리티는 APM 한계성을 극복하는 방법은 맞지만, 어느 하나가 더 나은 방법이라기 보단 조직이나 사용자 상황에 따라 적합한 선택해야 하는 것이 주요 포인트였습니다. 하지만 상용 APM 제품은 다소 높은 구매 비용으로 인해, 규모가 작은 기업의 경우 부담이 될 수 있는데요. 이 때 오픈소스 APM 솔루션이 효과적인 대안이 될 수 있는데요. 따라서 이번 시간에는 주요 오픈소스 APM 알아보고, APM 상용 제품과는 어떤 차이점이 있는지 살펴보겠습니다. │오픈소스(Open Source) 소프트웨어란? 오픈소스(Open Source)란 개발 핵심 소스 코드를 공개하여 누구나 접근하고, 수정하여, 배포할 수 있는 소프트웨어를 말합니다. 얼핏 자유 소프트웨어와 비슷하게 느껴질 수 있지만 조금 다른 의미를 가지는데요. 자유 소프트웨어는 사용자의 '자유'를 강조하지만, 오픈소스는 소스 코드의 '접근성과 협업'을 중시합니다. 대표적으로 관계형 데이터베이스인 MySQL, 웹 브라우저인 Firefox, 컨테이너 가상화 플랫폼인 Docker가 대표적인 오픈소스 소프트웨어라고 할 수 있습니다. 현재 국내 디지털플랫폼 정부 구축 정책 기조에 따르면, 오픈소스 소프트웨어는 여러가지 장점을 갖고 있는데요. 오픈소스 장점 오픈소스의 첫번 째 장점은 진입 비용이 낮다는 점입니다. 공개된 소스를 기반으로 수정과 배포가 가능하기 때문에 새로운 기반 기술을 만들어 갈 경우, 비용을 줄일 수 있습니다. 두 번째 장점은 MSA 아키텍처의 기술적 토대가 오픈소스에 기반한다는 점입니다. 최근 소프트웨어 개발 환경은 오픈소스 의존도가 높아지고 있는데요. 이는 오픈소스가 특정 벤더에 종속되지 않아 독립성을 보장한다는 점에서, 오픈소스의 가장 큰 장점이라고 할 수 있습니다. 그에 반해 오픈소스 단점도 명확한데요. 오픈소스 단점 첫 번째 단점은 상용 소프트웨어와 비교해 매뉴얼이 빈약한 경우가 많다는 점입니다. 이에 따라 실제 개발 단계에서 운영이 지연될 가능성이 높아지죠. 두 번째 단점으로는 기술 지원 체계는 오픈소스 커뮤니티에 의존하고 있기 때문에, 유지보수에 큰 어려움이 따른다는 점입니다. 물론 특정 벤더에 종속되지 않는 독립성을 취할 수 있지만, 지속적인 기술지원은 어렵죠. 그렇다면 현재 국내에서 가장 많이 사용하는 오픈소스 APM 소프트웨어는 무엇인지, 자세히 살펴보겠습니다. │오픈소스 APM 종류 오픈소스 APM 종류는 다양하지만 대표적으로 Scouter, Pinpoint, Prometheus & Grafana에 대해 알아보겠습니다. 1. Scouter 첫 번째로 소개해 드릴 오픈소스 APM은 스카우터(Scouter)입니다. 스카우터는 LG CNS에서 만든 오픈소스 APM 소프트웨어로, 자바를 사용하는 애플리케이션과 컴퓨터 시스템 성능을 모니터링합니다. 이 소프트웨어는 Window, Linux, Mac 등 다양한 운영체제(OS)에서 사용할 수 있으며, 주로 이클립스 플랫폼에서 개발되었습니다. 즉 여러 환경에서 자바 애플리케이션 데이터를 수집하고, 성능 상태를 효과적으로 할 수 있다는 점이 스카우터의 주요 기능입니다. 1-1. Scouter 아키텍처 Scouter는 주로 네 가지 주요 컴포넌트로 구성되어 있는데요. 자세히 살펴보도록 하겠습니다. Java Agent Java 기반의 웹 애플리케이션(예: Tomcat, JBoss, Resin)과 스탠드얼론 Java 애플리케이션을 모니터링하는 모듈입니다. 이 에이전트는 웹 애플리케이션 서버(WAS)에 설치되어 애플리케이션 성능 정보(예: 메소드 실행 시간, 사용자 요청 처리 시간 등)를 수집하고 Scouter 서버로 전송합니다. Host Agent 이 에이전트는 운영 체제(예: Linux, Unix, Windows 등)에 설치되어 시스템 하드웨어 리소스 사용 상태를 모니터링합니다. CPU 사용률, 메모리 사용량, 디스크 I/O와 같은 정보를 수집하여 Scouter Server로 보내주는 역할을 합니다. Scouter Server(Collector) 이 서버는 Java Agent와 Host Agent로부터 데이터를 수집해 저장합니다. 사용자는 클라이언트를 통해 이 데이터에 접근할 수 있으며, 이를 통해 애플리케이션의 성능을 모니터링하고 분석할 수 있습니다. Scouter Client 사용자는 Scouter Client를 통해 서버에 접속하여, 서버로부터 수집된 데이터를 조회할 수 있습니다. 이 클라이언트는 다양한 성능 지표를 기반으로 한 시각적인 대시보드를 제공하여, 애플리케이션과 시스템 성능 상태를 효과적으로 모니터링할 수 있게 도와줍니다. 1-2. Scouter 주요기능 출처ⓒ tistory_chanchan-father Scouter의 주요기능 중 하나는 'XLog'인데요. 이 기능은 트랜잭션 응답 시간을 시각적으로 표현하여 시스템 성능을 모니터링하는 데 유용합니다. 액티브 서비스가 종료될 때마다 XLog 차트에 점으로 나타나기 때문에, 개발자는 트랜잭션 처리 시간을 간편하게 확인할 수 있습니다. 각 점을 클릭하여 관련 트랜잭션의 자세한 정보를 얻을 수 있으며, 시스템 분석과 성능 개선 작업에도 도움을 줍니다. 2. Pinpoint 두 번째로 소개해 드릴 오픈소스 APM는 '핀포인트(Pinpoint)'입니다. 핀포인트는 네이버에서 2012년 7월부터 개발을 시작해, 15년 초에 배포한 오픈소스 APM 솔루션입니다. 핀포인트는 MSA를 위한 국산 오픈소스 APM으로 각광 받아왔습니다. 2-1. Pinpoint 아키텍처 핀포인트 아키텍처는 다음과 같은 네 가지 주요 구성요소는 이루어져 있는데요. 아래 내용을 통해 자세히 살펴보겠습니다. Agent 핀포인트의 에이전트는 애플리케이션 서버에 java-agent 형태로 추가되어, 애플리케이션 성능 데이터를 실시간으로 수집합니다. 이 에이전트는 수집한 데이터를 Collector로 전송하며, 이 과정을 통해 성능 모니터링과 문제 해결에 필요한 중요 정보를 제공합니다. Collector Agent로부터 받은 프로파일링 데이터를 수집하고 처리하는 역할을 합니다. Collector는 이 데이터를 구조화하여 빅데이터 데이터베이스인 HBase로 전송합니다. 이를 통해 데이터가 안정하게 저장되고 필요할 때 쉽게 접근할 수 있습니다. HBase Hbase는 분산 데이터베이스로서, 핀포인트 시스템에서 성능 데이터를 저장하고 검색하는 중심적인 역할을 합니다. 대규모 데이터 볼륨을 효율적으로 처리할 수 있는 구조로 설계되어 있으며, 수집된 데이터의 신속한 처리와 안정적인 저장을 보장합니다. Web UI 웹 인터페이스를 통해 사용자에게 데이터를 시각적으로 제공하는 구성 요소입니다. 이 데이터는 핀포인트 에이전트가 애플리케이션 서버에서 수집한 정보를 기반으로 생성됩니다. 이렇게 수집된 데이터는 서버를 통해 Web UI로 전송되면, 사용자는 UI를 통해 다양한 형태의 성능 지표를 조회하고 분석할 수 있습니다. 이러한 구성을 통해 네이버 핀포인트는 애플리케이션 성능 문제를 진단하고 해결하는 데 필요한 정보를 제공합니다. 2-2. Pinpoint 주요기능 그 다음으로 핀포인트의 대표적인 주요 기능에 대해 자세히 알아보겠습니다. 서버맵 이 기능은 분산 환경에서 각 노드 간의 트랜잭션 흐름을 시각적으로 표현하여, 트랜잭션 성공/실패와 응답 시간 분포를 실시간으로 모니터링할 수 있습니다. 이를 통해 시스템 부하 상태와 성능 병목 지점을 식별할 수 있죠. 콜스택 콜스택(Call Stack) 기능은 트랜잭션의 세부 실행 과정을 추적하여, 성능 문제 원인을 분석하고, 코드 최적화를 지원합니다. 이 기능은 각 콜스택에서 소요되는 시간과 발생하는 예외 상황까지 자세히 보여주어, 성능 병목 현상 진단에 도움을 줍니다. 트랜잭션 필터 사용자는 트랜잭션 필터 기능을 이용해 응답 시간이 긴 트랜잭션, 특정 사용자나 IP 주소에서 발생한 트랜잭션 등을 세부적으로 필터링하여 분석할 수 있습니다. 이는 특정 조건에 따른 트랜잭션의 세부 사항을 더 깊이 이해하는 데 유용합니다. Application Inspector 이 기능은 애플리케이션 성능 지표를 시간별/일별로 분석하며 CPU 사용률, 메모리 사용량, JVM 상태 등을 체계적으로 관리하는 기능을 제공합니다. 이를 통해 애플리케이션의 전반적인 성능 관리가 가능합니다. 3. Prometheus 세 번째로 소개해 드릴 오픈소스 APM는 '프로메테우스(Prometheus)'입니다. 프로메테우스는 관제 대상으로부터 모니터링 메트릭 데이터를 저장하고, 검색할 수 있는 시스템인데요. 무엇보다 CNCF 재단으로부터 '클라우드 네이티브에 적합한 오픈소스 모니터링'으로 각광 받아 쿠버네티스(Kubernetes, K8s) 이후 두번째로 졸업한 프로젝트입니다. 프로메테우스는 CNCF 졸업 인증서를 받은 이후 시장에서 많은 주목을 받았습니다. 구조가 간단해서 운영이 쉽고, 다양한 모니터링 시스템과 연계할 수 있는 여러 플러그인을 보유하고 있기 때문이죠. 이러한 장점은 클라우드 네이티브를 위한 기초적인 오픈소스로 각광 받게 되었습니다. 3-1. Prometheus 아키텍처 프로메테우스에서 가장 큰 특징은 에이전트(Agent)가 아닌, 메트릭(Metric)을 통해 데이터를 수집한다는 점입니다. 메트릭이란 이전 시간에도 살펴봤듯이, 현재 상태를 보기 위한 시계열 데이터를 의미합니다. 프로메테우스는 이러한 메트릭 수집을 위해 다양한 수집 도구를 사용하는데요. 좀 더 자세히 살펴보도록 하겠습니다. Application 위 아키텍처에서 수집하고자 하는 대상은, 애플리케이션으로 표현됩니다. 주로 MySQL DB과 Tomcat과 같은 웹 서버까지 다양한 서버와 WAS가 모니터링 대상이 됩니다. 프로메테우스는 이를 주로 Target System으로 표현하고 있습니다. Pulling 프로메테우스에서는 각 Target System에 대한 메트릭 데이터 수집을 풀링(Pulling) 방식을 통해 데이터를 수집합니다. 프로메테우스는 앞서 언급했듯 별도의 에이전트로 데이터를 수집하지 않습니다. Prometheus Server에서 자체적인 Exporter를 통해 메트릭 읽는 방식을 사용하죠. 보통 모니터링 시스템 에이전트는, 모니터링 시스템으로 메트릭을 보내는 푸쉬(Push) 방식을 사용합니다. 특히 푸쉬 방식은 서비스가 오토 스케일링 등과 같이 환경이 가변적일 경우 유리한데요. 풀링 방식의 경우 모니터링 대상이 가변적으로 변경될 경우, 모니터링 대상의 IP 주소를 알 수 없기 때문에 정확한 데이터 수집이 어려워집니다. Service Discovery 이처럼 정확한 데이터 수집을 해결하기 위한 방안이 서비스 디스커버리(Service Discovery) 방식입니다. 서비스 디스커버리는 현재 운영 중인 대상 목록과 IP 주소를 동적으로 수집하는 프로세스입니다. 예를 들어 file_sd, http_sd 방식부터 디스커버리 전용 솔루션인 Consul을 사용하죠. Exporter Exporter는 모니터링 대상 시스템에서 데이터를 수집하는 역할을 합니다. 별도의 에이전트는 아니지만, 에이전트와 비슷하게 데이터를 수집하는 역할을 합니다. HTTP 통신을 통해 메트릭 데이터를 수집하며, Exporter를 사용하기 어려울 경우 별도 Push gateway를 사용합니다. Prometheus Server 프로메테우스 서버는 데이터 수집, 저장, 쿼리를 담당하는 중앙 구성 요소입니다. HTTP 프로토콜을 사용하는 것이 특징이며, Exporter가 제공하는 HTTP 엔드포인트에 접속해 메트릭 데이터를 수집합니다. Alert Manager 사용자에게 알람을 주는 역할을 담당합니다. Prometheus는 타 오픈소스 모니터링 솔루션과 달리 Alert Manager UI 기능을 제공하여 일부 제한된 데이터를 시각화할 수 있습니다. 하지만 시각화 기능이 제한적이므로, 보통 Grafana라는 오픈소스 대시보드 툴을 사용하여 UI를 보완합니다. 3-2. Grafana '그라파나(Grafana)'에 좀 더 자세히 설명한다면, 데이터 분석을 시각화하기 위한 오픈소스 대시보드 도구입니다. 다양한 플러그인을 이용해 프로메테우스와 같은 모니터링 툴과 *그라파이트(Graphite)1, *엘라스틱서치(Elasticsearch)2, *인플럭스DB(InfluxDB)3 와 같은 데이터베이스와 연동하여 사용자 맞춤형 UI를 제공합니다. 특히 방대한 데이터를 활용해 맞춤형 대시보드를 쉽게 만들 수 있는 것이 그라파나의 큰 장점이죠. *1. Graphite: 시계열 데이터를 수집하고 저장하며, 이를 그래프로 시각화하는 모니터링 도구 *2. Elasticsearch: 다양한 유형의 문서 데이터를 실시간으로 검색하고 분석하는 분산형 검색 엔진 *3. InfluxDB: 시계열 데이터의 저장과 조회에 특화된 고성능 데이터베이스 그라파나의 주요 특징은 플러그인 확장을 통한 데이터 시각화와 템플릿 지원으로, 다른 사용자 대시보드 템플릿을 쉽게 가져와 사용할 수 있다는 점입니다. 이처럼 Promeheus 장점은 Exporter를 통한 다양한 메트릭 데이터 수집과 3rd Party 솔루션과 연계가 수월하다는 점입니다. 오픈소스로 IT 인프라를 구성하는 기업의 경우 Prometheus와 Grafana를 연계하여, 서비스 운영현황을 모니터링 할 수 있습니다. 지금까지 오픈소스 APM가 무엇이고, 각각의 아키텍처와 주요 기능은 무엇인지 살펴보았는데요. 그렇다면 상용 APM 제품과, 오픈소스 APM는 어떤 차이점이 있을까요? │상용 APM 제품 vs 오픈소스 APM 제품 앞에서 소개해 드린 오픈소스 APM 중, 대표적으로 프로메테우스와 핀포인트를 상용 APM 제품과 비교해 보겠습니다. Prometheus vs 상용 APM 제품 우선 프로메테우스를 대표하는 장점은 유연한 통합성입니다. 마이크로서비스가 대세 기술로 자리 잡으면서, 인스턴스를 자주 확장하거나 축소하는 것이 자유로운 요즘인데요. 만약 이 작업을 수동으로 관리한다면 매우 어려울 수 있습니다. 하지만 프로메테우스를 사용하면 이런 문제를 해결할 수 있죠. 프로메테우스는 쿠버네티스와 같은 여러 서비스 디스커버리 시스템과 통합되어, 쿠버네티스 클러스터 내의 모든 노드와 파드에 발생하는 매트릭을 자동으로 수집할 수 있습니다. 이러한 기능은 마이크로서비스 환경에서 효율적으로 모니터링 할 수 있습니다. 하지만 한계점도 있는데요. 바로 실시간 데이터 확인이 어렵다는 점입니다. 프로메테우스는 풀링(Pulling) 주기를 기반으로 메트릭 데이터를 수집하기 때문에, 순간적인 스냅샷 기능이 없습니다. 수집된 데이터는 풀링하는 순간 스냅샷 데이터라고 볼 수 있죠. 이러한 단점은 APM에서 일반적으로 지원하는 실시간성 트랜잭션 데이터를 대체하기 어렵습니다. 반면에 상용 APM 제품은 어떨까요? 대표적으로 Zenius APM 사례를 통해 살펴보겠습니다. Zenius APM은 에이전트가 자동으로 메트릭을 수집하여 서버로 전송하여, 데이터를 실시간으로 처리할 수 있습니다. 또한 에이전트가 푸쉬(Push) 방식이기 때문에, 데이터의 지연이 풀링 방식에 비해 적고 데이터가 더 정확하게 수집되죠. 또한 Raw Data 기반의 실시간 과거 데이터를 통해 정밀한 장애 원인 분석이 가능합니다. 과거 시점 스냅샷 기능도 있어 문제 발생 시점을 정확히 파악하여, 문제 해결 시간을 단축시킬 수 있죠. Pinpoint 장단점 vs 상용 APM 제품 그 다음으로는 핀포인트를 대표하는 장점에 대해 알아 보겠습니다. 핀포인트 장점으로는 클라우드 환경에서 뛰어난 가시성을 보여준다는 점입니다. 클라우드에서의 웹 애플리케이션 서버(WAS)는 유연성과 확장성이 뛰어나지만, 복잡한 시스템 구조로 인해 모니터링이 어려울 수 있는데요. 핀포인트는 이러한 환경에서, 각 가상 서버의 성능을 실시간으로 파악하고 문제를 신속하게 진단하는데 큰 도움을 줍니다. 그에 반해 핀포인트에 단점은 다양한 기능이 부족합니다. 핀포인트는 JVM 기반 데이터의 모니터링이 일부 제한되는데요. 대시보드의 'Inspector'와 같은 일부 기능이 지원되지 않아, 이용에 어려움이 있습니다. 또한 다수 트랜잭션이 동시에 실행될 때 특정 트랜잭션이 오래 걸리거나 에러가 발생할 경우, 그 원인을 파악하기 어렵습니다. 이는 세부적인 콜백 정보를 충분히 제공하지 않았기 때문이죠. 그렇다면 상용 APM 제품은 어떨까요? 이번에도 Zenius APM를 통해 자세히 살펴보겠습니다. Zenius APM은 다양한 트랜잭션 모니터링 기능을 제공하는데요. 이를 통해 사용자는 트랜잭션 성능을 실시간으로 파악하고, 잠재적 문제를 빠르게 진단할 수 있습니다. 또한 이 시스템은 대량으로 동시 접속자를 대량으로 관리할 수 있어, 피크 타임에 발생할 수 있는 성능 저하를 사전에 감지하고 대응할 수 있도록 지원합니다. 비교표 구분 Zenius APM Prometheus Pinpoint Scouter 기술지원 벤더 지원을 통한 빠른 초기 설정, 기술지원 용이 오픈소스 기반의 기술지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 오픈소스 기반의 기술 지원 불가로 초기 학습 필요 사용자 인터페이스 실시간 트랜잭션 처리, 액티브 서비스 모니터링, 동시 접속 사용자 수 등, 사용자 정의 실시간 모니터링 상황판 구성 Grafana 플러그인 연계로 다양한 컴포넌트 모니터링 가능 토폴로지 일부 모니터링 불가, 제한적으로 사용자 동시 접속자 수 모니터링 가능, 사용자 정의 기반 모니터링 불가 기능 제한에 따른 간소화된 UI 제공, 사용자 정의 기반 모니터링 불가 컨테이너 모니터링 가능 가능 가능 불가 쿠버네티스 모니터링 가능 가능 불가 불가 연관 인프라 정보 모니터링 연관된 WAS 서버, DB서버, DB확인, 해당 인프라 상세 정보 제공 불가 재한적으로 연관 인프라 모니터링 제공 불가 Raw Data 과거 시점 재현 초 단위 데이터를 기준으로 장애 발생시점 등 과거 상황을 그대로 재현함 불가 불가 불가 리포팅 사용자 정의 기반 리포팅 서비스 제공 써드 파티를 이용한 제한적인 리포팅 기능 제공 불가 불가 이번 시간에는 주요 오픈소스 APM와 상용 APM 차이점을 살펴보았습니다. 각 솔루션은 분명한 장단점을 갖고 있으며, 모든 상황에 완벽한 솔루션은 없습니다. 그러나 여기서 주목해야 할 것은, APM의 핵심이 '트랜잭션을 얼마나 효과적으로 모니터링할 수 있는가'라는 점입니다. 이 측면에서 오픈소스 APM은 한계가 있으나, 상용 APM 제품은 이를 효과적으로 수행할 수 있습니다. 물론 비용 면에서 오픈소스 APM와 비교해, 상용 APM 제품이 부담스러울 순 있습니다. 하지만 트랜잭션 모니터링 관리의 중요성을 고려한다면, 이러한 투자는 가치가 있습니다. 더 나아가 심층적인 실시간 데이터 모니터링, 신속한 데이터 처리, 전문적인 기술적인 기술 지원, 보다 복잡한 시스템 환경에서 효과적인 트랜잭션 관리를 우선시 한다면 Zenius APM 제품이 더더욱 적합할 것입니다. ?더보기 Zenius APM 더 자세히 보기 ?함께 읽으면 더 좋아요 • APM에서 꼭 관리해야 할 주요 지표는? • APM의 핵심요소와 주요기능은? • 옵저버빌리티 vs APM, 우리 기업에 맞는 솔루션은?
2024.07.26
기술이야기
APM의 핵심요소와 주요기능은?!
기술이야기
APM의 핵심요소와 주요기능은?!
지난 글을 통해서 APM의 필요성과 '트랜잭션' 현황 파악의 중요성에 대해서 알아봤습니다. 이번 시간에는 트랜잭션을 어떤 방식으로 추적하는지 APM 동작 과정을 통해 살펴보고, APM 시스템을 최적화하는 핵심 요소와 기능은 무엇인지 자세히 알아보겠습니다. │APM 동작 과정 APM은 Client-Web Application-DBMS와 같은 구성요소 사이에 트랜잭션1을 추적할 수 있어야 합니다. 이를 통해 웹 서비스 전반적인 성능을 모니터링하고, 문제가 발생했을 때 원인을 신속하게 진단할 수 있기 때문인데요. 그렇다면 각 단계별로 APM가 어떻게 트랜잭션1을 추적하는지 좀 더 자세히 살펴보겠습니다. *트랜잭션1: 쉽게 말해 데이터베이스에 실행되는 작업 단위를 의미합니다. 트랜잭션은 작은 여러 작업들을 하나의 그룹으로 묶어 처리하기 때문에, A라는 작업에서 일부가 성공했다고 하더라도 하나의 트랜잭션 처리가 비정상적으로 종료되면 모두 실패한 것이죠. 클라이언트(Client) 웹 서비스 사용자가 이용하는 디바이스 또는 브라우저입니다. 클라이언트에서 발생하는 요청과 응답을 추적하여 페이지 로딩 시간, 사용자 활동, 에러 발생 등을 파악할 수 있습니다. 이 정보들을 통해 사용자 경험을 분석하고 개선하는데 기초 자료로 사용되죠. 웹서버(Web Server) 클라이언트 요청을 받아, 적절한 답을 생성하여 보내는 서버입니다. 이 단계에서 APM은 서버(예: Apache, Nginx) 로그와 성능 지표를 분석하여 요청 처리 시간, 데이터 전송량, 서버 오류 등 정보를 모니터링하고 기록합니다. 웹 애플리케이션 서버(WAS) WAS는 Web Application Server의 약자로, 애플리케이션에서 사용하는 데이터를 저장하고 관리하는 시스템입니다. 이 단계에서 APM은 데이터베이스 성능을 모니터링하여 DB 쿼리 실행시간과 DB 서버 부하 등을 측정하고, 성능 문제를 파악하는 데 도움을 줍니다. WAS 종류로는 WebLogic, Websphere, JEUS, Tomcat 등이 있습니다. 데이터베이스(DBMS) DBMS(Database Management System)는 기업에서 발생하는 모든 데이터를 저장하고 관리하는 소프트웨어입니다. 이 단계에서는 DB 성능 관리 솔루션을 통해, 애플리케이션 개발자가 작성한 SQL 튜닝과 DBMS 소프트웨어 병목 현상 등을 모니터링할 수 있습니다. 특히 데이터베이스는 IT 인프라에서 필수 요소입니다. 기업 서비스 대부분이 데이터베이스에 접근하여, 데이터를 조회하고 수정해야 하기 때문에 DB 관리는 매우 중요하다 할 수 있죠. 이처럼 APM은 Client-Web Server-Was-DB 각 구성요소 사이에 있는 트랜잭션을 추적하여 웹 서비스 성능을 평가할 수 있습니다. 그다음으로는 APM 시스템 전체적인 성능을 평가하고 최적화하는 핵심 요소는 무엇인지 살펴보겠습니다. │APM 성능을 최적화하는 핵심요소 APM 시스템은 크게 5가지 요소를 통해, 전체적인 성능을 최적화할 수 있습니다. 우선 Resource는 시스템 성능과 안정성을 평가하는데 중요한 역할을 하며, DataBase는 SQL 쿼리의 실행 계획이나 DB 연결 상태와 같은 세부 정보를 분석하여 데이터베이스 성능을 최적화합니다. Alert는 모니터링된 데이터에서 문제를 식별하고 사용자나 운영자에게 경고를 보내며, User 경험과 행동을 추적하여 서비스 품질을 평가합니다. WAS는 서버 내부에서 발생하는 이벤트를 모니터링하고, 서버 성능을 평가하는 역할을 합니다. Resource-Database-Alert-User-WAS 이 5가지 요소는 APM 아키텍처를 구성하는 핵심 요소이기도 한데요. 다음 내용을 통해 APM 아키텍처를 좀 더 자세히 살펴보겠습니다. │APM 아키텍처 APM 아키텍처는 Agent를 통해 WAS(관리대상) 실시간 데이터를 수집하고 → Manager에서 데이터를 수집/분석/가공 한 뒤 → 다양한 UI로 시각화합니다. 특히 꼭 기억해야 할 APM 아키텍처 핵심 3가지는 에이전트, 데이터베이스, 통신방식인데요. 좀 더 자세히 알아보겠습니다. 에이전트 APM 관리대상(예시: WebSphere, WebLogic, JBoss, JEUS, Tomcat 등)에 Agent라고 불리는 소프트웨어를 설치합니다. 그다음 모니터링 대상 시스템(WAS)에서 데이터를 수집하죠. 에이전트는 애플리케이션 내부 동작을 모니터링하고, 성능 데이터를 수집하는 역할을 합니다. 이러한 데이터를 활용하여 에이전트는 서비스 구간별 현황과 초당 처리 건수, 서비스 응답시간, 동시 접속자 수, 트랜잭션 거래량, 에러 등 상세한 지표를 제공해 주죠. 데이터베이스 수집된 데이터를 보관하고 분석하기 위해서는, 데이터베이스(DataBase)를 사용합니다. 이 데이터베이스는 대규모 데이터를 저장하고 관리하는 구조여야 하며, 분석하고 보고서를 생성하는데 필요한 데이터를 효율적으로 쿼리 할 수 있어야 합니다. 통신방식 APM 시스템은 보통 다양한 통신 프로토콜(Communication Protocol)을 사용하여, 데이터를 수집하고 전송합니다. 예를 들어 웹 소켓(WebSocket)을 통해 실시간 데이터를 전송하거나 http(s)를 사용하여 주기적으로 데이터를 전송하는 방식이 일반적입니다. 그다음으로는 APM은 어떤 주요 기능을 제공하는지 알아보도록 하겠습니다. │APM 주요기능 APM은 대표적으로 웹사이트와 소프트웨어 애플리케이션 및 서비스에서, 성능을 모니터링하고 분석하는 기능이 있는데요. 좀 더 자세한 APM 기능을 살펴보겠습니다. 실시간 성능 통합 모니터링 [그림] Zenius-APM 토폴로지 맵 APM은 Tomcat, Jboss, WebLogic, JEUS 등 다양한 애플리케이션 서버(WAS) 환경에서 실행되는 애플리케이션 통합 모니터링을 제공합니다. 시스템 간의 처리 성능과 현황 정보는 토폴로지 뷰를 통해 시각적으로 파악할 수 있죠. [그림] Zenius-APM 모니터링 상황판 또한 각 서버의 트랜잭션 처리량, 처리 속도, 자원 사용량을 실시간으로 분석하여 시스템 성능을 관리합니다. 특정 트랜잭션 실행 경로를 추적하고 분석하여, 성능 병목 현상도 식별할 수 있습니다. [그림] Zenius-APM 모니터링 서비스 응답분포 APM은 서비스 응답 분포도를 제공하여, 비정상적인 트랜잭션을 집중적으로 조회하고 분석할 수 있습니다. 장애관리 APM은 메모리 누수, 서비스 응답 지연과 같은 장애 원인을 실시간으로 추적하고 분석하는 기능을 제공합니다. Rawdata를 기반으로 장애 발생 시점을 재현하여, 문제의 근본 원인을 파악하는 데 도움을 주죠. 또한 자동 이벤트 처리는 장애 관리 규칙(Rule)에 따라 이루어지며, 문제 발생 시에는 사용자에게 즉각적인 알림을 제공합니다. 성능 분석과 통계 APM은 애플리케이션 성능을 다양한 지표(예: 성능비교, 기간비교, 증설 필요성, 시간대별 등)를 통해 분석하고, 여러 파일 형식의 보고서로 제공합니다. 또한 애플리케이션 성능 문제와 SQL 쿼리 간의 연관성을 분석하여 성능 개선 방안을 제안합니다. 다양한 환경 지원 레거시 시스템에서 클라우드 인프라에 이르기까지, APM은 다양한 IT 환경을 효과적으로 지원합니다. 또한 WAS 중심 성능 관리와 MSA(마이크로 서비스 아키텍처) 환경 모니터링을 가능하게 하는 기술을 제공하죠. 이번 시간에 알아본 내용처럼 APM은 다양한 애플리케이션 서버(WAS) 환경에서 실행되며, 트랜잭션 성능을 관리하는 통합 모니터링 제품입니다. Zenius-APM와 같이 다양한 WAS 환경에서의 통합 모니터링과 트랜잭션 처리 현황을 체계적으로 파악할 수 있는 APM을 통해, 효과적으로 웹 애플리케이션을 관리해 보세요!
2024.07.19
기술이야기
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
기술이야기
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
2022년 CNCF의 연간 조사에 따르면 전 세계 기업의 96%가 쿠버네티스를 활용 중이거나 활용을 고려 중인 것으로 나타났습니다. 또한 가트너는 쿠버네티스(Kubernetes, K8s) 시장의 규모가 올해 1조 2천억 원대를 돌파할 것으로 내다봤습니다. 이처럼 쿠버네티스가 '대세'로 자리 잡고 있는 가운데, 쿠버네티스 활용에 대한 어려움을 겪는 기업도 많아지고 있습니다. 클러스터 내의 리소스 할당/운영과 쿠버네티스 콘솔(대시보드)의 구성이 가장 큰 어려움으로 꼽히는데요, 이러한 어려움을 극복하기 위한 첫 번째 조건은 바로 올바른 '쿠버네티스 모니터링'입니다. 효과적이고 올바른 쿠버네티스 모니터링을 위해선 두 가지를 '꼭' 기억해야 하는데요, 지금부터 그 두 가지를 자세히 알아보겠습니다. ㅣ올바른 쿠버네티스 모니터링을 위한 두 가지 조건 첫 번째, 쿠버네티스의 주요 항목을 한눈에 볼 수 있어야 합니다 쿠버네티스 환경은 규모가 크고 동적이며 복잡한 구조를 가지고 있습니다. 그렇기 때문에 리소스 사용률, 에러 로그 등의 중요 정보를 실시간으로 파악할 수 있어야 합니다. 따라서 쿠버네티스 모니터링을 효과적으로 수행하기 위해 첫 번째로 기억해야 할 것은 '쿠버네티스 환경을 한 화면에서 종합적으로 볼 수 있어야 한다는 점'입니다. 우선 종합적인 모니터링을 통해 리소스 사용률, 트래픽 패턴 등의 중요 정보를 실시간으로 파악할 수 있어 문제 발생 시 빠르게 원인을 진단하고 해결할 수 있습니다. 또한 쿠버네티스 운영의 핵심은 효율적인 리소스 관리인데, 종합적인 모니터링을 통해 리소스 낭비를 줄이고 애플리케이션의 성능을 최적화할 수 있습니다. 이와 더불어 시스템의 이상 유무를 지속적으로 모니터링함으로써, 예기치 않은 다운타임 등의 오류를 방지할 수도 있죠. 따라서 쿠버네티스 모니터링 솔루션에는 각 구성요소들 간의 관계와 영향도를 '한 눈'에 파악할 수 있는 모니터링 View가 반드시 필요합니다. 더불어 쿠버네티스 환경을 관리하는 운영자나 조직마다 중요하게 생각하는 데이터 지표가 다릅니다. 때문에 운영자가 자신의 필요에 따라 모니터링 화면을 자유롭게 구성할 수 있다면, 더욱 효과적으로 시스템을 관리할 수 있습니다. [그림1] (왼) 클러스터 상세 모니터링 View, (중) 클러스터 메인 모니터링 View, (오) 주요 Service 모니터링 View 더 자세한 설명을 위해 제니우스(Zenius)의 쿠버네티스 모니터링 솔루션인 Zenius-K8s을 예로 살펴보겠습니다. 우선 [그림1]에 나와있는 것처럼 쿠버네티스 모니터링 솔루션은 여러 클러스터 현황을 한눈에 확인할 수 있는 요약 뷰를 제공해야 합니다. 이를 통해 클러스터의 상세한 현황과 노드, 파드, 컨테이너, 서비스 등을 통합적으로 모니터링할 수 있기 때문이죠. 이러한 기능은 운영자로 하여금 시스템 전반에 대한 신속한 이해를 가능하게 하고, 업무 효율성을 크게 높여줍니다. [그림2] (왼) Zenius-K8s 운영현황 오버뷰 (오) 사용자가 직접 정보를 구성할 수 있는 컴포넌트 수정창 여기에 더해서 Zenius-K8s처럼 쿠버네티스 주요 데이터 지표를 '사용자 관제 목적'에 따라 자유롭게 구성이 가능하고 가시성 높은 다양한 차트와 컴포넌트를 포함한 오버뷰를 제공한다면, 더욱더 성공적인 쿠버네티스 활용이 가능해집니다. 두 번째, 클러스터 별로 상세한 성능을 확인할 수 있어야 합니다 효과적이고 올바른 쿠버네티스 모니터링을 위한 두 번째 조건은, '클러스터 별로 상세한 성능을 확인할 수 있어야 한다는 것'입니다. 특히 쿠버네티스 환경을 관리하고 최적화함에 있어서 핵심적인 역할을 하는 클러스터 현황(노드, 파드, 컨테이너), 성능 지표(CPU 사용량, Memory 사용량), 이벤트 현황을 연관 지어 직관적으로 모니터링할 수 있어야 합니다. 이를 통해서 운영자는 클러스터의 전반적인 상태를 실시간으로 모니터링하고, 발생 가능한 문제를 조기에 식별하여 시스템의 안정성과 성능을 지속적으로 높일 수 있기 때문이죠. 또한 클러스터의 각 구성 요소가 서로 다른 역할을 수행하기 때문에 각 노드, 파드, 컨테이너별로 상세히 모니터링하는 것도 매우 중요합니다. [그림3] 클러스터 별 상세정보 요약 뷰 지금 살펴본 내용을 Zenius-K8s 예시 화면을 통해 다시 한번 되짚어 보겠습니다. 먼저 위 [그림3]에서 보이는 것처럼 주요 클러스터 현황(노드, 파드, 컨테이너 등), 주요 성능 지표(CPU, Memory 사용률 등), 이벤트 현황 등을 한 화면에서 확인할 수 있는 요약 뷰가 있어야 합니다. [그림4] Zenius-K8s 토폴로지 맵 특히, Zenius-K8s의 경우 수집한 데이터를 기반으로 자동으로 각 구성요소 간의 연관관계와 서비스 상태를 토폴로지 맵(Topolgy Map) 형태로 구성할 수 있습니다. 또한 다양한 조회 기준(노드, 네임스페이스, 서버)과 상세 정보 조회 기능을 제공하고 있죠. 쿠버네티스 모니터링 솔루션에는, 직관적이고 효율적인 모니터링을 위해 반드시 위와 같은 기능이 포함되어 있어야 합니다. [그림5] 노드(Node) 별 상세 모니터링 [그림6] 파드(Pod) 별 상세 모니터링 [그림7] 컨테이너(Container) 별 상세 모니터링 마지막으로 위의 Zenius-K8s의 예시 화면들처럼, 클러스터 내 각각의 구성요소에 대한 상세한 모니터링이 필요합니다. 이를 통해 산재된 데이터에 대한 효율적인 관리가 가능하기 때문이죠. 。。。。。。。。。。。。 지금까지 성공적인 쿠버네티스 모니터링을 위한 두 가지 조건을 살펴봤습니다. 쿠버네티스의 활용도와 중요성이 더 커지는 가운데, 운영의 안정성과 효율성을 높여주는 쿠버네티스 모니터링 솔루션 도입은 이제 선택이 아닌 필수가 되었습니다. 쿠버네티스 현황을 한눈에 볼 수 있고, 세부 요소를 세밀하게 들여다볼 수 있는 모니터링 솔루션을 통해서 성공적으로 쿠버네티스를 활용하시기 바랍니다.
2024.04.05
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
기술이야기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
기술이야기
클라우드 전환과 하이브리드 클라우드가 성공하려면?
정부와 공공기관, 그리고 금융권과 대기업 등 모든 분야에서 클라우드 전환이 가속화되고 있습니다. 이에 따라서 가트너(Gartner)는 2018년 약 2.1조 원이었던 국내 클라우드 시장 규모가 2024년에는 약 '6조 원'에 이를 것으로 내다봤습니다. 。。。。。。。。。。。。 1. 클라우드 전환 단계 ▪초창기: 소규모 Workload가 시범적으로 전환되는 시기 ▪과도기: 인프라, 네이티브 앱 등 주요 Workload가 전환되는 시기 ▪정착기: 모든 Workload가 클라우드에서 개발/구축되는 시기 클라우드 전환은 크게 세 단계로 나누어서 진행됩니다. 대부분의 기업과 기관이 현재 '클라우드 전환 과도기'에 접어든 가운데, 몇 가지 작지 않은 이슈로 인한 어려움을 겪고 있습니다. 2. 클라우드 송환? 클라우드에서 On-Premise로 복귀?! IDC는 최근, "향후 2년 내 프라이빗 클라우드(Private Cloud) 또는 비 클라우드 환경으로의 이전을 계획하고 있는 기업의 비중이 70%가 넘는 것으로 나타났으며, 이러한 현상은 더욱 심화될 전망이다"라고 발표했습니다. '클라우드 송환(Cloud Repatriation)'이라고도 부를 수 있는 이 같은 현상은, 주로 클라우드의 높은 비용·성능 문제·보안 및 규제·공급자 Lock-in 등이 주요 원인으로 지적되고 있습니다. 이와 같은 클라우드 전환 과도기에서의 어려움을 극복하고 효율성을 높이기 위해, '하이브리드 클라우드'로의 전환이 새로운 트렌드로 자리 잡았습니다. 3. 유연하게 활용한다! ‘하이브리드 클라우드’로의 전환 트렌드 하이브리드 클라우드(Hybrid Cloud)는 퍼블릭·프라이빗 클라우드와 대형 IDC 센터와 같은, 온프레미스(On-Premise) 환경을 조합하여 사용하는 것을 말합니다. ⓒ디지털 서비스 이용 지원 시스템 현재 87% 이상의 기업이 2가지 이상의 멀티 클라우드를 사용하며, 72% 이상은 하이브리드 클라우드를 사용하는 것으로 나타났습니다. 하이브리드 클라우드의 장점 ▪다양한 환경을 조합하여 유연하게 리소스를 확장하거나 축소 가능 ▪민감정보를 프라이빗 클라우드에 유지하여 보안성 강화 ▪서로 다른 클라우드 환경의 장점의 조합 및 활용 가능 하이브리드 클라우드는 위와 같은 분명한 장점이 있기에, 계속해서 많은 기업과 기관이 사용할 것으로 예상됩니다. 하지만 하이브리드 클라우드도 반드시 극복해야 할 한계와 문제점이 있습니다. 하이브리드 클라우드의 한계는 크게 세 가지로 나눠볼 수 있는데요. 4. 하이브리드 클라우드의 세 가지 한계, 그리고 극복 방안 관리의 복잡성 Complexity On-Premise, 하이브리드 클라우드, 퍼블릭 클라우드 등은 모두 서로 다른 인프라 구성과 특성을 보유하고 있습니다. 따라서 다양한 CSP와 Legacy 시스템 등을 종합적으로 관제하기 위한 모니터링 기술이 필요합니다. 정책의 분산화 Decentralization 각 CSP의 독자적인 기술과 운영환경에 따라, 기업의 IT 인프라 관리 정책이 분산화될 우려가 있습니다. 따라서 서로 다른 API 환경에 대응할 수 있는 중립적인 모니터링 접근 방식이 필요합니다. 서비스 품질 이슈 Quality 이기종 환경에서의 실시간 성능 모니터링 부재로, 서비스 품질 및 성능 문제가 발생할 수 있습니다. 따라서 실시간 상태 및 성능 지표 모니터링을 통한 최적의 프로비저닝 역량 확보가 중요합니다. 결국 하이브리드 클라우드의 세 가지 한계를 극복할 수 있는 '성공적인 모니터링 전략'이 필요합니다. 5. 하이브리드 클라우드 환경에서의 성공적인 모니터링 전략 앞서 살펴본 것처럼 하이브리드 클라우드의 효율을 높이고 한계를 극복하기 위해선, 성공적인 클라우드 & On-Premise 통합 모니터링이 필요합니다. 통합 모니터링을 통해서 다양한 관리 Point를 단일화하고, 일관된 IT 정책을 적용하며, 다양한 관점별 View를 통한 데이터 가시성을 확보할 수 있습니다. 또한 각 환경에 대한 실시간 성능 지표 모니터링과 신속한 장애 감지 및 원인 분석을 통해, 높은 서비스 품질을 유지할 수 있습니다. 주요 Point에 대해서 자세히 살펴본다면 다음과 같습니다. l 단일 Framework 기반의 통합 모니터링 환경 구성 성공적인 모니터링을 위해서는 Public/Private 클라우드와 On-Premise를 아우르는 단일 Framework 기반의 통합 모니터링 환경을 구성해야 합니다. 다양한 환경에 대한 통합 모니터링 시스템을 구축하여, 대시보드와 토폴로지 맵 등을 통해 분산된 IT 리소스와 서비스 정보를 한눈에 볼 수 있어야 하는 것이죠. l 퍼블릭 클라우드 모니터링: 통합 관리 및 운영 가시성 확보 제니우스(Zenius)의 클라우드 서비스 맵 이용 중인 클라우드 서비스 전체 및 개별 단위의 주요 지표 상세 모니터링으로, 가시성을 확보해야 합니다. 이를 통해서 다양한 서비스의 주요 지표를 관리, 이용 서비스 간의 연관관계 관리, 과금(Billing) 관리, 즉각적인 장애 관리를 할 수 있습니다. l 프라이빗 클라우드 모니터링: 개별적인 구성 환경을 고려한 모니터링 각 기업과 공공기관 개별적인 클라우드 구성 환경을 고려하여, 클라우드 인프라 자원을 관리하고 활용도를 높이기 위한 모니터링 전략도 필요합니다. 위의 설명처럼 쿠버네티스(Kubernetes), 컨테이너(Container), SDN 등 프라이빗 클라우드 환경을 구성하는 요소를 다각적으로 관리하여 IT 인프라 자원의 활용도를 향상시켜야 합니다. l MSA 기반 애플리케이션 모니터링 IDC에 따르면 2025년에 출시되는 앱의 90% 이상이 '클라우드 네이티브'로 구현될 전망이라고 합니다. 클라우드 네이티브의 핵심은 'MSA(Micro Service Architecture)' 방법론으로의 전환입니다. 애플리케이션을 효과적으로 실행·배포·활용하기 위한 핵심요소는 'Container'이죠. 따라서 MSA 환경에서의 성공적인 애플리케이션 관리를 위해서는 실시간 모니터링, 분산 시스템 관제, 서비스 수요 변화 대응 이 세 가지가 가장 중요합니다. 위 도표에 정리된 것처럼 컨테이너 기반의 마이크로 서비스 모니터링, 복잡화된 시스템 간 트랜잭션 분석 및 가시화, 오토스케일링 자동 대응을 통한 관제 연속성 확보 전략을 구축한다면 성공적으로 MSA 기반의 애플리케이션 모니터링을 할 수 있습니다. l 레거시 환경 모니터링 마지막으로 On-premise로 자체 보유하고 있는 레거시 장비와 프라이빗 클라우드 장비가 있는 전산실의 성공적인 모니터링을 위해서는, 먼저 On-premise 환경을 고려한 최적의 포인트 솔루션과 통합 플랫폼 기반 모니터링이 확보되어야 합니다. 또한 안정적인 On-Premise 환경 운영을 위해 전산실 부대설비(UPS, 항온 항습기 등), 환경감시(온/습도, 누수 등)에 대한 레거시 환경 맞춤형 관리가 가능해야 합니다. 물리/가상 자원 간의 그룹화 관리 기능, 다양한 자원 간의 이벤트 연관 설정 및 분석 기능도 성공적인 레거시 환경 모니터링을 위한 필수조건입니다. 6. 성공적인 모니터링 솔루션 선택 기준은? 클라우드 전환기, 하이브리드 클라우드 환경에서 성공적인 모니터링을 위한 루션 선택 기준은 1) 기술력이 있는지 2) 검증된 솔루션인지 3) 믿을 수 있는 기업인지 이렇게 세 가지로 정리할 수 있습니다. 하나, 기술력이 있는 솔루션인가? 클라우드와 레거시 통합을 위한 프레임워크 기반의 솔루션인지, 그리고 여러 환경에 존재하는 IT 자원을 통합적으로 가시화할 수 있는지, 변화에 쉽게 대응할 수 있는 사용자 맞춤 설계형 대시보드를 제공하는지를 꼭 살펴봐야 합니다. 브레인즈컴퍼니 제니우스(Zenius)의 퍼블릭 클라우드 서비스 관제 예시 또한 AI 기술을 통해 장애를 사전에 예방하는 제니우스(Zenius) 처럼, 서비스 장애로 인한 손실을 방지하기 위한 사전 장애 감지 및 대응도 지원하는지 꼭 살펴봐야 합니다. 업무 효율과 편의성을 높이기 위한 오토스케일링 자동 대응, 장애/이벤트 오토리커버리 등 운영 자동화 기능도 필수 요소입니다. 둘, 검증된 솔루션인가? 클라우드 서비스 보안인증(CSAP), 마켓플레이스 등록 등 클라우드 환경에서의 성능 검증 절차 등 거친 솔루션인지도 중요하게 살펴봐야 합니다. 또한 다수의 공공기관 및 다양한 산업군에서 사용되고 있는지도 중요한 판단 기준입니다. 셋, 믿을 수 있는 기업의 솔루션인가? 마지막으로 모니터링 서비스를 개발 및 운영한 업력, 재무 상태 안정성, 전문 인력 보유 등으로 지속적인 지원이 가능한 기업의 솔루션인지를 검토해 봐야 합니다. 。。。。。。。。。。。。 브레인즈컴퍼니는 전통적인 IT 인프라 모니터링 시장에서의 경험을 바탕으로, 하이브리드 환경에서의 성공적인 모니터링을 수행하고 있습니다. 이제 필수가 된 클라우드 전환, 제대로 된 솔루션 선택을 통해 성공적으로 진행하시기 바랍니다!
2024.01.18
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! ? 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
1
2