반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
기술이야기
클라우드(Cloud) 관리와 AWS가 뭔가요?
오늘날 IT 인프라 운영환경은 매우 복잡해졌어요. 갑작스러운 환경 변화에 따라 신속한 대응도 필요한 시점이죠. 이러한 현상으로 많은 기업들이 온프레미스(On-premise) 환경에서 클라우드(Cloud) 환경으로 전환하는 추세이기도 해요. 클라우드 컴퓨팅 서비스 중에는 여러 벤더가 있는데요. 대표적으론 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)가 있어요. 그중 ‘AWS’는 국내 클라우드 시장에서 3년 간 70% 내외의 시장점유율로, 1위를 차지했는데요(*클라우드 서비스 분야 실태조사(2022), 공정거래위원회) 이처럼 높은 점유율을 가진 1) AWS의 주요 서비스를 살펴보고 2) 하이브리드 클라우드 모니터링이 필요한 이유는 무엇인지 3) AWS의 각종 서비스를 모니터링할 수 있는 제니우스(Zenius)도 함께 소개해 드릴게요! AWS(Amazon Web Services)란? AWS는 ‘Amazon Web Services’의 약어로, 아마존 닷컴이 제공하는 클라우드 컴퓨팅 플랫폼 및 서비스의 집합이에요. AWS에서 제공하는 여러 가지 서비스를 이용하면, 기업 및 개인이 필요한 컴퓨팅 리소스를 유연하게 확장하고 관리할 수 있죠. AWS 주요 서비스는 다음과 같아요! AWS 주요 서비스 ▪Amazon VPC(Amazon Virtual Private Cloud) 격리된 네트워크 환경을 구성하게 해주는 서비스예요. AWS의 동일 계정이나, 서로 다른 계정 간에 격리된 네트워크를 연결할 수 있도록 다양한 옵션들을 제공해 줘요. ▪Amazon EC2(Amazon Elastic Compute Cloud) AWS에서 가장 많이 사용되는 컴퓨팅 서비스예요. 가상 서버를 호스팅 할 때 사용하죠. 리눅스나 윈도우 환경 등 다양한 인스턴스 유형을 지원하고, 필요에 따라 성능을 조정할 수 있어요. 생성 가능한 인스턴스 타입은 리전 별 차이가 있으나, 100개~300개에 이를 정도로 방대하답니다. ▪AWS Lambda AWS에서 제공하는 서버리스 컴퓨팅 플랫폼이에요. 여기서 ‘서버리스’란 개발자가 서버의 존재를 신경 쓸 필요가 없다는 뜻이에요. AWS에서는 서버 인프라에 대한 프로비저닝, 유지관리 등을 대신 처리해 주죠. 이처럼 개발자가 비즈니스 로직에 집중하여 코드를 실행하게 해줘요. ▪Amazon S3 AWS에서 제공하는 스토리지 서비스예요. S3는 파일시스템이 아닌 오브젝트 스토리지 서비스로, 모든 파일에 API를 통해 접근 가능해요. 무제한적인 확장성, 높은 가용성과 내구성을 제공하며 단일 파일을 최대 5TB까지 업로드할 수 있어요. ▪Amazon EBS(Amazon Elastic Block Store) EC2 인스턴스에 장착하여 사용할 수 있는 가상 저장 장치에요. EBS를 연결하여 파일을 저장하면, EC2 인스턴스와 관계없이 데이터를 영구적으로 보관 가능해요. 이 밖에도 AWS에서 제공하는 서비스는 매우 방대한대요. 아래 URL로 접속 시, 필요한 서비스 목록 확인이 가능하답니다! 🔍 더 많은 AWS 서비스가 궁금하다면? 온프레미스와 AWS의 차이 온프레미스 방식은, 클라우드 컴퓨팅 서비스가 나오기 전까지 기업에서 전통적으로 사용한 ‘일반적인 인프라 구축 방식’이에요. 온프레미스 환경에서 서버를 운영하면, 호스팅 서비스를 이용하거나 서버를 직접 구매 또는 임대하죠. 그다음 데이터 센터(IDC, Internet Data Center) 또는 기업 전산실에 설치하여 운영해요. 하지만 물리적인 서버를 직접 설치할 경우, 많은 시간과 비용이 소모되어 이를 위한 운영 공간과 인력이 필요할 수 있어요. 예시를 들어 볼게요. 대형 콘서트 예매, 대학교 수강신청, 입시 원서 접수 등 단기간에 트래픽이 급증했다가 감소되는 경우를 생각해 볼까요? 이때 ‘온프레미스 방식’으로 시스템을 구축한다면, 매우 많은 비용 낭비가 발생하게 될 거예요. 반면 AWS의 경우는 어떨까요? 인터넷이 연결된 어디에서든 쉽게 인프라를 구축하고, 사용한 만큼 비용을 지불할 수 있어요. 큰 이벤트를 처리한 후 생성된 리소스를 간편하게 삭제할 수 있죠. 이처럼 온프레미스 방식과 대비한다면, 남는 자원에 대한 비용 고민이 없어지겠죠? 하이브리드 클라우드 모니터링이 필요한 이유 이처럼 AWS는 매우 유연하고 확장성 있는 클라우드 서비스예요. 하지만 모든 서비스를 AWS를 이용해서 서비스하는 것은 한계가 있는데요. 이유는 다음과 같아요. ▪보안 및 규정 준수 민감한 데이터나 규정 준수가 필요한 업무의 경우, 사설 클라우드나 온프레미스 환경의 자체 데이터 센터를 통해 운영하려는 경향이 있어요. ▪비용 효율 AWS는 사용한 만큼 비용을 지불하기 때문에, 예측할 수 없는 트래픽 증가 등에 대응하기에 좋아요. 하지만 서비스에 따라 온프레미스 환경에서 운영하는 것이 비용 측면에서 더 효율적인 경우가 있죠. 이처럼 많은 기업이 AWS를 이용한 클라우드 서비스로 전환하는 추세지만, 당분간 온프레미스 방식과 결합한 하이브리드 클라우드 운영환경이 많은 편이에요. 그렇다면 이러한 하이브리드 클라우드 운영 환경을 모니터링할 수 있는 방법이 없을까요? 바로 ‘제니우스’를 활용한다면 가능해요! 제니우스를 이용한 하이브리드 클라우드 모니터링 구성도 제니우스 하이브리드 클라우드 모니터링 프로세스를 간략히 소개할게요! 우선 클라우드 환경 단계에서는 AWS 서비스를 이용하여 구축된 클라우드 환경 정보를 RestAPI 방식으로 수집해요. CMS Manager는 AWS 클라우드 환경에서 수집한 정보를 취합 후 스토리지에 저장해 주죠. EMS Manager는 온프레미스 환경에서 수집한 정보를 취합 후 스토리지에 저장해 줘요. Web UI에서는 스토리지에 저장된 데이터를 이용하여, 사용자에게 모니터링 정보를 제공한답니다! 제니우스에서 AWS 모니터링하기 제니우스를 이용한 ‘하이브리드 클라우드 모니터링 구성’을 좀 더 자세히 살펴볼까요? ▪CMS > 모니터링 > 요약 : 위 그림은 AWS 통합 요약 페이지인데요. EC2, RDS, VPC 등 과금 현황까지 통합 모니터링할 수 있어요. ▪EMS > 토폴로지 > 클라우드 맵 : 리전 별 자동 구성형 클라우드 맵 페이지에서는, AWS 리전 별 이용하는 서비스와 연관관계를 클라우드 맵이 자동으로 구성해 줘요. ▪CMS > 클라우드서비스 > EC2 > 주요 성능 지표 : 주요 성능지표 모니터링 페이지에서는 AWS 콘솔에 접속하지 않고, AWS 주요 성능 지표에 대한 모니터링 추이를 확인할 수 있어요. ▪EMS > 오버뷰 : 오버뷰를 통한 온프레미스 + AWS 통합 모니터링 페이지에서는, AWS 모니터링 항목과 온프레미스 환경 모니터링 항목의 통합 현황판을 확인할 수 있어요. 이처럼 AWS와 온프레미스 환경은 물론, 더 다양한 환경의 인프라 모니터링을 위해 제니우스를 사용을 해보는 건 어떨까요?
2023.11.16
기술이야기
서버 모니터링 데이터의 3가지 활용 방법
기술이야기
서버 모니터링 데이터의 3가지 활용 방법
서버는 기업의 핵심 시스템과 데이터를 보관하고, 애플리케이션과 서비스를 호스팅하며, 비즈니스에 필요한 작업을 수행합니다. 이러한 서버가 원활하게 작동하지 않거나 성능 이슈가 발생할 경우, 업무 중단, 데이터 손실, 고객 서비스 저하 등 심각한 문제가 발생할 수 있습니다. 따라서 서버의 안정적인 운영과 성능 관리는 비즈니스의 지속 가능성과 경쟁력에 직결되는 중요한 요소입니다. 서버 모니터링은 이러한 서버의 상태와 동작을 지속적으로 감시하고, 성능 및 이상 상황을 식별하는 프로세스입니다. 이를 통해 시스템 관리자나 운영팀은 잠재적인 문제를 사전에 감지하고 조치를 취할 수 있습니다. 서버 모니터링을 통해 수집하는 데이터는 다양합니다. CPU 사용률, 메모리 사용량, 디스크 공간, 응답 시간, 서비스 가용성, 로그데이터 등 다양한 데이터를 통해 서버의 상태와 동작을 감시합니다. 앞에 언급한 데이터들 외에도 네트워크 연결 상태, 서비스 상태, 프로세스 실행 상태 등 다양한 데이터를 모니터링할 수 있으며, 서버의 운영 환경과 요구사항에 따라 수집되는 데이터의 종류가 달라질 수 있습니다. 이렇게 수집한 데이터들은 어떻게 활용할 수 있을까요? 먼저 병목 현상 식별, 리소스 확장 등을 통해 성능 최적화를 하는 데에 활용될 수 있습니다. 관리자는 수집한 모니터링 데이터를 분석하여 병목 현상을 식별할 수 있습니다. CPU 사용률이 지나치게 높거나 메모리 사용량이 극단적으로 증가하는 경우에는 해당 자원에 대한 최적화가 필요하다는 사실을 인지할 수 있습니다. 또 데이터를 분석하여 서버 리소스의 부족을 파악하고, 필요한 경우 리소스를 확장할 수 있습니다. 예를 들어, CPU 부하가 높다면 CPU를 추가로 할당하거나, 메모리 부족이 발생하면 메모리 용량을 늘릴 수 있습니다. 리소스뿐만 아니라 프로세스의 동작 또한 최적화할 수 있습니다. 특정 프로세스가 많은 CPU 사용량을 차지하고 있다면 해당 프로세스를 최적화하여 자원 사용을 줄일 수 있습니다. 디스크 I/O의 경우 역시 성능을 분석하여 디스크 병목 현상을 확인할 수 있습니다. 그 후 필요에 따라 디스크 용량을 확장하거나 디스크 성능을 향상시킬 수 있습니다. 디스크 공간이 부족한 경우 쓰기 작업을 최적화하여 디스크 공간을 효율적으로 활용할 수 있습니다. 두 번째로 용량 계획에 참고할 수 있습니다. 예를 들어, 서버 모니터링 데이터를 사용하여 트래픽 패턴을 분석하고 예측할 수 있습니다. 특정 시간대에 트래픽이 증가하는 경향을 발견할 수 있다면 해당 시간대에 필요한 용량을 예측하여 서버 리소스를 적절히 조정할 수 있습니다. 이를 통해 예상되는 트래픽 증가에 대비하여 서버의 용량을 조정하고 성능을 유지할 수 있습니다. 또 서버 모니터링 데이터를 사용하여 서버의 성능 패턴을 분석할 수 있습니다. 예를 들어, 특정 시간대에 서버의 응답 시간이 급격히 증가하는 경향을 발견할 수 있다면 해당 시간대에 용량이 부족한 것으로 예상할 수 있습니다. 이를 기반으로 용량을 조정하거나 추가 리소스를 할당하여 성능을 최적화할 수 있습니다. 예비 용량 계획 역시 수립할 수 있습니다. 예를 들어, 서버의 CPU, 메모리, 디스크 사용량 등을 모니터링하고 기준치를 설정한 후, 해당 기준치에 도달하거나 근접할 때 추가 용량을 확보하는 계획을 세울 수 있습니다. 이를 통해 예상치 못한 용량 부족 상황을 방지하고 서버의 안정성과 성능을 유지할 수 있습니다. 마지막으로 장애 예측 및 대응에 활용할 수 있습니다. 서버 모니터링 데이터를 실시간으로 분석하여 이상 상황을 감지하고 경고를 발생시킬 수 있습니다. 예를 들어, CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 등을 모니터링하고 미리 설정한 임계값을 초과하는 경우에는 이상 상황으로 판단하고 관리자에게 경고 알림을 보내도록 설정할 수 있습니다. 이를 통해 잠재적인 장애 상황을 사전에 인지하고 대응할 수 있습니다. 혹은 서버 모니터링 데이터를 사용하여 이전의 장애 패턴을 분석하고 예측할 수 있습니다. 예를 들어, 특정 작업이나 트래픽 패턴에 따라 일정한 주기로 장애가 발생했던 경우, 해당 패턴을 파악하여 동일한 상황에서 장애가 발생할 가능성을 예측할 수 있습니다. 이를 기반으로 예방적인 조치를 취하거나 대응 전략을 수립하여 장애를 예방하거나 대응할 수 있습니다. 로그 분석을 통해 서버 모니터링 데이터와 로그 파일을 연계하여 장애 분석 및 대응이 가능합니다. 로그 파일에는 서버 동작 상태, 오류 메시지, 경고 등이 기록되어 있으므로, 장애 발생 시 해당 로그를 분석하여 장애의 원인을 찾고 대응할 수 있습니다. 로그 분석을 통해 예상치 못한 동작, 오작동, 예외 상황 등을 식별하여 이에 대한 조치를 취할 수 있습니다. 서버 모니터링 데이터는 다양한 방식으로 수집되고, 성능 최적화, 용량 계획, 장애 예측 및 대응 등 여러가지 방식으로 활용됩니다. 이를 바탕으로 IT 인프라 관리자와 서버를 사용하는 이용자들이 원활하고 안정적으로 서버를 이용할 수 있도록 도와줍니다.
2023.07.04
기술이야기
서버 모니터링의 두 가지 방식
기술이야기
서버 모니터링의 두 가지 방식
이번 블로그에서는 일반적으로 서버 모니터링 소프트웨어들이 널리 쓰고 있는 서버 모니터링의 두 가지 방식에 대해서 논의하고 그 차이점을 알아보겠습니다. 지난 블로그에서 언급했듯이, 서버 모니터링은 컴퓨터 서버의 성능을 관찰하고 분석해 최적의 상태로 실행되고 있는지 확인하는 작업입니다. 이 프로세스에는 일반적으로 CPU 사용률, 메모리 사용량, 디스크 I/O, 네트워크 트래픽 및 응용 프로그램 성능과 같은 다양한 메트릭에 대한 데이터를 수집하는 소프트웨어 도구의 사용이 포함됩니다. 서버 모니터링 소프트웨어는 데이터 수집 후 추세, 패턴 및 이상 현상을 식별하기 위해 데이터를 분석합니다. 분석을 통해 잠재적인 문제가 심각해지기 전에 식별하고 서버 관리자가 시정 조치를 취할 수 있도록 합니다. 예를 들어, CPU 사용률이 지속적으로 높은 경우 서버의 성능이 부족해 더 많은 리소스를 할당해야 할 수 있음을 나타낼 수 있습니다. 또는 디스크 I/O가 느린 경우 서버의 저장소가 과부하됐거나 최적화가 필요함을 나타낼 수 있습니다. 서버 모니터링 소프트웨어에는 관리자가 서버 성능을 파악하는데 도움이 되는 대시보드, 경고 및 보고 기능이 포함되는 경우가 많습니다. 대시보드는 핵심 성과 지표의 실시간 보기를 제공하는 동시에 특정 임계값을 초과하거나 문제가 감지되면 관리자에게 알림을 보냅니다. 서버 관리자는 보고 기능을 통해 시간 경과에 따른 성능 추세 및 문제에 대한 보고서를 생성할 수 있으며, 이를 통해 용량 계획 및 리소스 할당 결정을 알리는데 사용할 수 있습니다. 서버 모니터링은 일반적으로 에이전트 없는 서버 모니터링과 에이전트 기반 서버 모니터링, 이 두 가지 주요 접근 방식이 있습니다. 두 가지 모두 장단점이 있으며 어떤 것을 선택하느냐는 특정 요구 사항과 선호도에 따라 달라집니다. 에이전트 기반 서버 모니터링 에이전트 기반 서버 모니터링에는 모니터링하려는 각 서버에 ‘에이전트’라고 하는 별도의 서버용 모니터링 소프트웨어를 설치해 데이터를 수집하는 방식을 말합니다. 에이전트는 서버에서 다양한 성능 메트릭에 대한 데이터를 수집해 모니터링 시스템으로 다시 보냅니다. 이 접근 방식은 에이전트 없는 모니터링보다 더 상세하고 세분화된 데이터와 기능을 제공합니다. 또, 데이터를 암호화하고 보안 채널을 사용해 데이터를 전송하므로 일반적으로 에이전트 없는 모니터링보다 더 안전합니다. 에이전트 기반 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 성능 모니터링: 에이전트는 CPU, 메모리, 디스크 사용률, 네트워크 트래픽 등의 정보를 수집할 수 있습니다. 이를 이용해 서버의 성능을 모니터링하고, 부하가 높아지면 적시에 대처할 수 있습니다. ∙ 로그 모니터링: 에이전트는 서버에서 발생하는 로그를 수집할 수 있습니다. 이를 이용해 서버에서 발생한 이벤트의 원인 파악에 도움을 줄 수 있습니다. ∙ 보안 모니터링: 에이전트는 서버 내부의 보안 상태를 모니터링할 수 있습니다. 예를 들어, 악성 코드 감지, 사용자 로그인 상태, 파일 권한 등을 체크해 보안 위협을 조기에 감지할 수 있습니다. ∙ 애플리케이션 모니터링: 에이전트는 서버에 설치된 애플리케이션의 상태를 모니터링할 수 있습니다. 예를 들어, 웹 서버에서는 HTTP 요청, 응답 코드, 응답 속도 등을 모니터링해 애플리케이션의 상태를 파악할 수 있습니다. ∙ 자동화된 조치: 에이전트는 모니터링 데이터를 기반으로 자동화된 조치를 수행할 수 있습니다. 예를 들면, CPU 부하가 높아지면 자동으로 스케일 업 또는 스케일 아웃을 수행할 수 있습니다. 에이전트 리스 서버 모니터링 에이전트가 없는 서버 모니터링은 서버 자체에 소프트웨어를 설치할 필요가 없습니다. 대신 모니터링 소프트웨어가 별도의 서버나 워크스테이션에 설치되고, SNMP 또는 WMI와 같은 네트워크 프로토콜을 사용해 대상 서버에서 데이터를 원격으로 수집합니다. 이 접근 방식은 각 서버에 소프트웨어 에이전트를 설치하고 관리할 필요가 없어 일반적으로 설정 및 유지 관리가 더 쉽고 빠릅니다. 또, 에이전트 기반보다 같은 자원을 이용해서 더 많은 수의 서버를 모니터링할 수 있어 경제적입니다. 대신 기능이 제한적이고 프로토콜이 의존해 데이터를 수집하기 때문에 보안 문제가 발생할 수 있습니다. 에이전트 리스 서버 모니터링의 주요 기능은 다음과 같습니다. ∙ 원격 모니터링: 에이전트 없는 모니터링 도구는 원격 데이터 센터, 지사 또는 클라우드 환경에 있는 서버를 포함해 모든 곳에 있는 서버를 원격으로 모니터링할 수 있습니다. 이러한 유연성을 통해 조직의 전체 서버 인프라를 중앙집중식으로 모니터링하고 관리할 수 있습니다. ∙ 확장성: 에이전트 없는 모니터링은 서버 인프라 또는 워크로드 요구사항의 변화를 수용하기 위해 쉽게 확장 또는 축소할 수 있습니다. 추가 에이전트 소프트웨어 설치 또는 구성 없이 모니터링 시스템에 추가 서버를 추가할 수 있습니다. ∙ 포괄적인 모니터링: 에이전트 없는 모니터링은 서버 성능 메트릭을 추적하고 문제를 식별하며, 실시간 경고를 제공함으로써 관리자가 서버 인프라의 상태를 유지하고 중요한 애플리케이션과 서비스가 원활하게 실행되도록 합니다. ∙ 손쉬운 유지 관리 및 업데이트: 에이전트 없는 모니터링을 사용하면 모니터링 되는 각 시스템에서 에이전트 소프트웨어를 관리하고 업데이트할 필요가 없습니다. 이는 유지보수를 단순화하고 모니터링 시스템을 항상 최신 상태로 유지합니다. Zenius(제니우스)의 서버 모니터링 브레인즈컴퍼니의 지능형 IT 인프라 통합관리 소프트웨어 ‘Zenius(제니우스)’는 고객의 시스템 상황에 따라 에이전트 기반 및 리스 방식 모두 가능합니다. 에이전트 기반의 통합 모니터링 소프트웨어 ‘Zenius SMS’는 HTML5 기반 Web UI와 토폴로지 맵을 통해 서버 성능과 상태 및 서버 간 연관관계를 직관적으로 파악합니다. 특히, Zenius SMS는 애플리케이션 단위에 성능이나 로그를 세밀하게 모니터링 및 분석이 가능합니다. Zenius SMS의 주요 기능은 아래와 같습니다. Zenius SMS의 주요 서버 모니터링 기능 1. 프로세스: 프로세스 상태(Up/Down) 및 성능 모니터링(CPU/MEM) 2. 로그: 프로세스나 시스템 로그와 같은 각종 로그 모니터링 3. GPU: GPU의 상태 및 성능 모니터링 4. 보안: 서버의 보안 취약점 점검 5. 자동화: 모니터링 데이터를 기반으로 자동화된 조치 수행 6. 기타: 코어별 온도 모니터링, 서비스 포트별 네트워크 상태, S/W 목록, 환경변수, 계정, 그룹, 스케쥴링, 공유폴더 현황 등 ‘Zenius SMS’ 도입을 통해 체계화된 서버 통합관리를 할 수 있습니다. 반복적이고 수동적인 업무는 자동화돼 업무 효율성을 향상시키며, 객관적인 데이터를 기반으로 정확한 성능 현황 및 비교분석이 가능합니다. 이는 곧 서비스 연속성 확보로 이어지며, 향후 고객 만족도 향상을 기대할 수 있습니다. 반면, 고객 서버에 에이전트 탑재가 불가능한 경우에는 에이전트 리스 방식으로도 사용 가능합니다. 브레인즈컴퍼니의 에이전트 리스 제품으로는 ‘Zenius VMS’가 있습니다. ‘Zenius VMS’는 VMware, Citrix Xen Server, Hyper-V와 같은 서버 가상화 환경에서 호스트 서버와 게스트 서버의 리소스 할당 및 사용 현황, 관계 등을 통합적으로 관제합니다. ‘Zenius VMS’는 프라이빗 클라우드 환경을 모니터링하는데 효과적입니다. Open API로 프라이빗 클라우드 인프라와 통신해, 가상머신의 상태 및 성능, 스토리지 활용도 및 네트워크 트래픽과 같은 환경의 다양한 측면에 대한 데이터를 수집합니다. 수집된 데이터를 분석해 잠재적 문제를 나타낼 수 있는 경향, 패턴 및 이상 현상을 식별하고, 크게 CPU, 메모리, 디스크, MIB 이 4가지 정보를 기본적으로 제공합니다. ‘Zenius VMS’는 VM 상세 관리를 위해 SMS 추가 확장이 용이한 제품입니다. VMS를 통해 호스트-게스트 간 연관관계 기반의 모니터링을 시행하고, 별도로 가상화 서버에 SMS 모듈을 추가해 보다 다양한 모니터링 항목으로 정밀하게 관리함으로써 효과적인 통합관리 환경을 조성할 수 있습니다.
2023.05.09
기술이야기
서버 모니터링, 서버 관리, 서버 관리자
기술이야기
서버 모니터링, 서버 관리, 서버 관리자
서버는 기업의 IT 인프라를 구성하는 필수 요소입니다. 서버는 클라이언트에게 네트워크를 통해 정보나 서비스를 제공하는 컴퓨터 시스템으로, ▲파일 저장 및 공유 ▲웹사이트 및 애플리케이션 호스팅 ▲프린터 및 스캐너와 같은 네트워크 리소스 관리 ▲이메일 서비스 제공 등 다양한 기능을 수행합니다. 일반적으로 Microsoft Windows Server, Linux 또는 Unix와 같은 다양한 운영 체제를 실행하며, 가동 중지 시간을 최소화하면서 지속적으로 실행되도록 설계됐습니다. 오늘날과 같이 급변하는 비즈니스 환경에서의 서버 중단은 상당한 수익 손실과 평판 손상으로 이어질 수 있습니다. 이에 따라 기업은 서버 모니터링 및 관리를 위해 문제를 신속하게 식별하고 해결할 수 있는 강력한 서버 모니터링 시스템을 필수적으로 갖춰야합니다. 서버 모니터링과 서버 관리는 서버의 성능을 최적화하고 가용성을 보장하는데 중요한 관련이 있습니다. 이 블로그에서는 서버 모니터링과 서버 관리에 대해서 알아보고, 마지막으로 서버관리자가 어떤 일을 하는지 논의해 보고자 합니다. 먼저, 서버 모니터링과 서버 관리의 차이점은 다음과 같습니다. ------------------------------------------ 서버 모니터링이란? 서버 모니터링에는 도구와 소프트웨어를 사용해 서버의 성능, 상태 및 가용성을 추적하는 작업이 포함됩니다. 여기에는 CPU 사용량, 메모리 사용량, 디스크 공간, 네트워크 트래픽 및 애플리케이션 성능과 같은 모니터링 지표가 포함됩니다. 서버 모니터링의 목표는 문제가 발생하기 전에 잠재적인 문제를 감지하고, 문제가 발생할 때 문제 해결을 위한 데이터를 제공하는 것입니다. 서버 모니터링은 일반적으로 특수 도구를 사용해 자동화되는 프로세스입니다. 서버 관리란? 서버 관리는 서버가 최적으로 작동하도록 서버를 능동적으로 유지∙관리하고 구성하는 프로세스입니다. 여기에는 운영 체제, 소프트웨어 및 응용 프로그램의 설치 및 구성, 사용자 계정 및 사용 권한 관리, 백업 및 복원 수행, 서버 환경의 보안 및 규정 준수 보장 등의 작업이 포함됩니다. 서버 관리의 목표는 서버가 최고의 효율성으로 실행되고 안전하며, 사용자에게 필요한 서비스를 제공할 수 있도록 하는 것입니다. 요약하면, 서버 모니터링은 관찰 및 경고에 중점을 두는 반면, 서버 관리는 성능을 최적화하고 가용성을 보장하기 위해 서버를 능동적으로 구성하고 유지∙관리하는데 중점을 둡니다. 서버 모니터링은기업의 서버 관리자가 담당합니다. 서버 관리자는 기업의 비전과 전략을 달성하기 위해 서버를 비롯한 IT 시스템의 방향을 수립하는 IT 전문가입니다. 서버 관리자는 높은 수준의 가동 시간과 가용성을 보장하고 서버, 시스템 및 애플리케이션의 소프트웨어 및 하드웨어 기능과 같은 구성 요소를 평가합니다. 서버 관리자의 주요 업무는 조직의 규모와 특정 요구 사항에 따라 다를 수 있지만, 일반적으로 아래와 같습니다. 서버 관리자의 주요 업무 1. 서버 설치 및 구성 서버 설치 및 구성은 서버 관리자의 필수 업무로, 서버 하드웨어, 소프트웨어 및 네트워크 인프라에 대한 기술적 전문 지식, 세부 사항에 대한 주의 및 철저한 이해가 필요한 복잡한 작업입니다. 서버 관리자는 최적의 성능, 보안 및 안정성을 제공하는 동시에 서버가 조직의 요구사항을 충족하도록 올바르게 설치 및 구성됐는지 확인해야 합니다. 2. 서버 모니터링 및 유지보수 서버의 안정성과 성능을 유지하기 위한 핵심 업무입니다. 서버 관리자는 서버 하드웨어 및 소프트웨어를 유지∙관리해, 서버가 효율적이고 안전하게 실행되도록 하고 시스템 성능을 모니터링해 잠재적인 문제를 식별합니다. 3. 서버 보안 서버 보안 관리는 서버에 저장된 데이터의 기밀성, 무결성 및 가용성을 손상시킬 수 있는 잠재적인 보안 위협으로부터 서버를 보호하는 것과 관련된 업무입니다. 서버 관리자는 서버가 잠재적인 보안 위협으로부터 보호되고 서버가 관련 규정 및 표준을 준수하는지 확인하기 위해 적극적으로 노력합니다. 4. 서비스 제공 및 지원 서비스 제공 및 지원은 서버 서비스 및 응용 프로그램의 배포, 유지 및 지원 관리와 관련 있습니다. 이 업무는 서버 가용성을 유지하고 사용자 요구 사항을 충족하는데 중요하며, 서버 관리자는 사용자가 필요할 때 시기 적절하고 효과적인 지원을 받을 수 있도록 합니다. ------------------------------------------ 이처럼 서버 관리자는 서버가 원활하고 안전하며 효율적으로 실행되도록 하는데 중요한 역할을 합니다. 서버 관리자는 복잡한 기술적 지식을 보유해야 하고 빠른 대처 능력을 요구받으며, 보안 대응 및 최적화 작업 등에서 많은 어려움을 겪습니다. 더욱이 서버가 기능에 따라 세분화돼 일반 서버, 웹 어플리케이션 서버, 데이터베이스 서버 등으로 나뉘게 되면 각 기능별로 웹 애플리케이션 서버관리자나 데이터베이스 서버관리자 등으로 관리자의 역할이 세분화되기도 합니다. 서버의 수나 종류가 많아지고 구성이 복잡해지면 모니터링과 관리가 어려워집니다. 이를 돕기 위해 브레인즈컴퍼니의 Zenius(제니우스)와 같은 통합 서버 모니터링 및 관리 소프트웨어가 필요하게 됩니다.
2023.05.09
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
기술이야기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
기술이야기
옵저버빌리티 확보를 위한 대표 정보 소스 3가지
지난 블로그에서는 옵저버빌리티가 기존 모니터링과 어떻게 다른지 비교해봤습니다. 간략히 되짚어보면, 옵저버빌리티란 IT 환경이 다양해지고 기업의 서비스가 점점 복잡해짐에 따라 빠르게 문제를 찾아 해결하기 위해 서비스의 내부 상태와 동작을 이해하는 능력입니다. 옵저버빌리티는 IT 인프라별로 어떤 것이 문제라는 기준을 중심으로 모니터링하는 기존 방식에서 벗어나 모든 데이터를 실시간으로 수집하고 분석하여 IT시스템의 근본 원인에 접근하고, IT 운영 전문가의 노하우를 바탕으로 각 메트릭별 상관관계를 분석해 미래의 장애를 예측하는 인사이트를 강조합니다. 이번 블로그에서는 옵저버빌리티 확보에 가장 기본이자 중요한 정보 소스인 로깅, 메트릭, 트레이싱을 중심으로 알아보겠습니다. 이 세가지 소스는 시스템의 정확한 모니터링을 보장하고, 문제가 발생할 때 무엇이 잘못됐는지 근본원인을 추적하고, 전체 기능을 개선하는 데 도움이 되는 방법들입니다. 물론 이 세가지 방법만으로 옵저버빌리티가 확보됐다고 할 수는 없습니다. 옵저버빌리티 확보를 위해서는 로깅, 메트릭, 트레이싱을 통합해 이벤트의 상관관계를 분석하고, 데이터 시각화로 사용자에게 인사이트를 제공하는 능력이 추가돼야 합니다. l Logging : 시스템 내에서 발생하는 이벤트를 인지하고 향후 분석을 위해 저장하는 프로세스 l Metric : 응답 시간 또는 오류율과 같은 시스템 성능을 설명하는 숫자 값 l Tracing: 개발자가 병목 현상과 성능 문제를 식별할 수 있도록 서비스 호출 경로와 시간을 추적하는 프로세스 Logging 로깅은 로그를 남기는 것으로 로그를 수집하고, 저장하는 프로세스입니다. 로깅은 시스템 동작을 이해하고 문제를 진단하는 데 필요한 것으로, 향후 분석을 위해 저장하는 데이터인 만큼 올바른 세부 기준에 따라 의미가 있는 로그를 추출하는 것이 필요합니다. 그리고 예를 들어 웹 애플리케이션에 문제가 발생한 경우 로그를 남기는데, 메트릭을 통해서는 이 문제를 발견할 수 없으므로 그래서 로그는 중요합니다. 로그의 수집은 간단한 텍스트 파일에서 ELK(Elasticsearch, Logstash, Kibana)처럼 정교한 프레임워크에 이르기까지 다양한 형태를 취할 수 있습니다. 그래서 로그는 정형화하기 어렵고 그 양이 방대함으로 로그를 수집, 저장하고 분석할 때 다음과 같은 사항을 유의해야 합니다. l 과도한 로깅은 스토리지 비용을 증가시키고 로그의 검색 효율을 떨어뜨릴 수 있습니다. 따라서 어떤 데이터를 기록하고, 어떤 데이터를 기록하지 않을지 필터링하는 것이 중요합니다. l 장기간 보관할 필요가 없는 로그 효율적인 로깅 시스템을 위한 로그 보관 정책이 필요합니다. l 로그에는 인사이트를 제공할 수 있는 모든 컨텍스트 정보가 포함돼야 합니다. l 로깅은 다른 프로세스에 영향을 미치지 않도록 비동기 방식이어야 합니다. l 민감한 데이터가 로그에 남겨지지 않도록 마스킹을 해야 합니다. 그럼 로그 분석을 통해 알 수 있는 정보는 무엇이 있을까요? l 시스템의 상태: 로그에는 어떤 액션을 수행했는지, 어떤 데이터가 처리됐는지, 또 어떤 오류가 발생했는지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 시스템의 상태를 파악할 수 있습니다. l 이슈 파악: 로그에는 어떤 오류가 발생했고, 어떤 요청이 실패했는지, 어떤 리소스가 부족한지 등의 정보가 담겨 있으므로 이러한 정보를 분석해 이슈를 파악하고, 빠르게 대응할 수 있습니다. l 보안성 강화: 로그에는 로그인 시도, 권한 부여, 보안 이벤트 발생 등의 정보가 담겨 있으므로 이러한 정보를 분석해 보안 이슈를 파악하고, 보안성을 강화할 수 있습니다. Metric 로그가 텍스트라면 메트릭은 단순한 수치입니다. 메트릭은 시스템의 상태를 측정하고, 모니터링하는데 사용되는 숫자 측정값입니다. 조금 더 자세히 설명하면, 메트릭은 측정 항목을 정의하고 해당 항목을 수치로 측정해, 그 결과를 보고하고 시스템이 정상적으로 동작하는지 확인하거나 장애를 빠르게 감지하기 위한 소스입니다. 메트릭의 측정 대상은 CPU 사용률, 메모리 사용률, 네트워크 트래픽 등 인프라의 성능이나 초당 수신하는 요청수, 응답에 걸린 시간, 사용자에게 오류를 다시 보낸 응답 수 등 애플리케이션의 상태와 관련돼 있습니다. 메트릭을 통한 수집 가능한 범위는 모니터링 도구 사용 여부에 따라 달라집니다. 일반적인 방식은 에이전트를 이용해 모니터링 대상으로부터 데이터를 수집하는 것으로, 수집할 메트릭을 정의하기가 유연하고 성능이나 안정성 등의 이슈에 대한 정보도 수집할 수 있는 장점이 있습니다. 에이전트를 사용하지 않고 운영 체제나 애플리케이션에서 제공하는 메트릭 수집 API를 사용하는 방식도 있는데, 수집하는 메트릭이 비교적 제한적입니다. 단순히 메트릭을 수집하는 것만으로 시스템을 모니터링하기에 충분하지 않습니다. 메트릭 데이터를 잘 활용하기 위해서는 분석 방법이 중요한데, 분석을 위해서는 몇가지 단계를 거쳐야 합니다. l 먼저, 데이터를 시각화하여 쉽게 이해할 수 있는 형태로 변환해야 합니다. 차트나 그래프, 대시보드 등을 통해 데이터의 패턴과 추세를 파악할 수 있으며, 시스템의 상태를 실시간으로 모니터링할 수 있습니다. l 다음으로, 데이터를 분석하여 시스템의 문제를 식별합니다. 예를 들어, 응답 시간이 지연되는 경우, 이를 발생시키는 주요 요인을 파악하여 시스템을 개선해야 합니다. 이를 위해 데이터를 세분화하여 요소를 파악하고, 문제를 식별하는 데 도움이 되는 경향성을 찾아야 합니다. l 마지막으로 이전 데이터와 비교하고 평가에 활용합니다. Metric 데이터를 분석할 때는 이전 데이터와 비교하여 시스템의 개선 정도를 파악하는 것이 중요하고, 이를 통해 시스템의 성능 개선 여부를 판단하고, 추가적인 개선 방안을 모색할 수 있습니다. Tracing 트레이싱은 분산 시스템에서의 서비스 호출 경로와 시간을 추적하는 기술입니다. 즉, 서비스 간의 호출 관계와 시간 정보를 추적해 각 서비스의 응답 시간을 파악하고, 이를 시각화해 병목 현상을 파악할 수 있습니다. 트레이싱은 크게 세 가지 구성 요소로 이뤄져 있습니다. l Trace: Trace는 서비스 간의 호출 경로와 시간 정보를 담고 있는 데이터 레코드입니다. Trace는 Span과 Trace ID, Parent Span ID 등의 정보를 가지며, 각 Span은 서비스 내부에서의 호출 관계와 시간 정보를 담고 있습니다. l Span: 분산 추적에서 가장 기본이 되는 논리 단위로 여러 개의 span 이 모여 trace를 완성한다는 개념입니다. 각각의 Span은 작업이름, 시작 시간과 종료 시간, key value 형태의 tags 와 Logs, span contexts를 가지고 있습니다. Span contexts는 분산추적을 하기위해 Trace 구간에서 종속된 Span을 구별할 수 있는 Span id와 Trace id를 말합니다. l Collector: Collector는 Trace 정보를 수집하고 저장하는 역할로, Trace 정보를 수집하기 위한 에이전트와 수집된 Trace 정보를 저장하고 분석하기 위한 Backend로 이뤄져 있습니다. (출처: [MSA] OpenTracing, 분산추적(Distributed Tracing) 과 Span context, KSR의 저장소) 이렇게 옵저버빌리티를 구현하기 위한 로깅, 매트릭, 트레이싱 등 세 가지의 중요한 정보 소스들을 다루기 위해서는 여러가지 기술들이 조합되어야 합니다. 다음 블로그에서는 그와 같은 정보 소스들을 다루어 옵저버빌리티를 구현하기 위해서 널리 사용되는 대표적인 오픈 소스들을 알아보고 Zenius-EMS에서는 옵저버빌리티 향상을 위해서 어떤 기능들을 제공하고 있는지 살펴보겠습니다.
2023.04.19
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
기술이야기
클라우드 송환(Cloud Repatriation): 클라우드에서 다시 온프레미스로
다시 온프레미스로 복귀하려는 움직임 2022년 발표된 IDC 조사 결과에 의하면, 미국 기업의 71%가 향후 2년내에 ‘클라우드 송환’ 계획이 있다고 합니다. 실제 일부 애플리케이션을 클라우드에서 빼내 자체 데이터센터로 다시 가지고 오는 기업이 늘고 있습니다. 우리나라의 경우 ‘클라우드 전환’이 업계의 화두가 되고 있지만, 클라우드 전환을 10년 넘게 경험하고 있는 미국의 경우에는 이제 ‘클라우드 송환’이 또 다른 화두가 되고 있습니다. 클라우드 송환(Cloud repatriation)은 기업이 클라우드 환경에서 운영하던 애플리케이션, 데이터, 서비스 등을 온프레미스 환경으로 되돌리는 것을 말합니다. 이는 퍼블릭 클라우드가 비즈니스 민첩성을 향상시킬 수 있지만, 특정한 상황에서 온프레미스보다 퍼블릭 클라우드의 지출 비용이 더 크다는 사실을 기업이 깨달으면서 해당 애플리케이션 등을 온프레미스로 복귀시키려는 IT 전략입니다. 클라우드 송환 현상은 IT 비용과 성능을 비롯한 여러 측면에서 클라우드가 항상 최선의 해결책은 아니라는 인식을 바탕으로 확대되는 추세이며 이제 기업이 비용, 성능, 보안의 극대화를 위해 기존 환경과 새로운 환경 사이에서 자연스러운 워크로드 분산을 시작했다는 의미이기도 합니다. 미처 몰랐던 클라우드 서비스의 문제점 클라우드를 채택한 기업이 클라우드 송환을 선택하는 이유는 다음과 같은 문제가 있기 때문입니다. 첫째, 클라우드 비용 문제입니다. 2022년 클라우드 현황(Flexera 2022 State of the Cloud Report) 보고서에 따르면, 클라우드 비용의 30% 정도가 낭비되고 있습니다. 클라우드 서비스가 표면적으로 내세우는 클라우드의 가장 큰 장점이 비용 절감임에도 불구하고, 클라우드 전환 OPEX(operational expenses)가 기존 CAPEX(capital expenses) 대비 더 낫다고 단정하기 어렵습니다. 초기에는 클라우드의 비용이 저렴하게 느껴지지만, 가상머신(VM)과 컨테이너 인스턴스에서 처리하는 작업이 늘어날수록 비용도 더해지기 때문입니다. 워크로드가 증가하는 스타트업은 클라우드를 통해 유연성을 확보하는 것이 비용면에서 유리하겠지만, 예측 가능한 수준의 워크플로우를 갖고 있는 기업이라면 얘기가 달라집니다. 특히, 클라우드에서는 인터넷 대역폭 및 스토리지 요금 등 추가적인 비용이 발생할 수 있습니다. 둘째, 보안 문제입니다. 기업은 클라우드 제공자가 제공하는 기본적인 보안 기능 외에도 보안 문제에 대한 책임을 직접 지게 됩니다. 또, 기업은 자체 보안 정책을 준수해야 하며, 이를 클라우드 환경에 적용하는 것이 쉽지 않습니다. 특히 복잡한 멀티클라우드 환경에서는 견고하게 클라우드 보안 아키텍처를 구축하기 어렵고 외주 처리에 따라 많은 비용이 듭니다. 셋째, 성능 문제입니다. 클라우드에서는 다른 기업과 리소스를 공유하기 때문에 성능 문제가 발생할 수 있습니다. 또, 클라우드 환경에서 애플리케이션 및 데이터를 조작하는 데 필요한 대역폭이 충분하지 않을 경우 성능 문제가 발생할 수 있습니다. 따라서 기업은 성능 문제로 인해 클라우드 송환을 선택할 수 있습니다. 넷째, 제어 문제입니다. 클라우드에서는 기본적으로 클라우드 제공자가 인프라 관리와 보안을 담당합니다. 이는 기업이 클라우드 환경에서는 많은 경우 애플리케이션, 데이터, 서비스 등을 직접 제어할 수 없다는 것을 의미합니다. 따라서, 기업이 직접 컨트롤하지 못해서 문제가 발생한다고 느낄 때에는 클라우드 송환을 선택할 수 있습니다. 클라우드 송환의 이점 클라우드 송환(Cloud repatriation)은 기업에게 여러 가지 이점을 제공합니다. 첫째, 기업은 애플리케이션, 데이터, 서비스 등을 직접 관리할 수 있습니다. 이는 기업이 보안 및 규정 준수와 같은 중요한 문제를 직접 다룰 수 있도록 해주며, 제어력을 높임으로써 IT 부서가 잠재적 문제에 대비해 인사이트와 더 나은 계획을 수립할 수 있게 해줍니다. 클라우드에서는 기본적으로 클라우드 제공 업체가 인프라 관리와 보안을 담당하기 때문에, 이를 직접 제어할 수 없습니다. 클라우드 송환에 적합한 케이스는 정적인 기능을 제공하며 사용량이 많은 애플리케이션입니다. 비용이 고정되고 예측 가능한 애플리케이션은 온프레미스 환경에서 관리하는 편이 더 효과적입니다. 둘째, 기업은 클라우드 비용을 절감할 수 있습니다. 한때 퍼블릭 클라우드가 모든 문제의 해답이라고 생각했다가 퍼블릭 클라우드의 비용 특성과 이점이 기업의 상황과는 맞지 않는다는 사실을 깨닫게 됩니다. 2~3년에 걸쳐 추가되는 비용을 감안하면 퍼블릭 클라우드를 계속 사용할 만한 매력은 시간이 갈수록 희석됩니다. 기업은 반복적으로 발생하는 클라우드 운영 비용을 줄이거나 없애는 방법으로 많은 비용을 절감할 수 있습니다. 예를 들어, 어떤 기업의 데이터가 여러 사이트에서 발생하고 그 양이 많다면 클라우드 환경에서 데이터를 보관하고 이동시키는 데 많은 비용이 발생할 수 있습니다. 또 다른 예로 영상을 불러오고 저장하는 작업이 빈번한 영상 제작 기업의 경우, 클라우드 서버에서 병목현상이 발생할 수 있고 내부 LAN처럼 10Gbps 속도로 데이터를 옮기려면 그 비용이 저렴하지 않을 수 있습니다. 비용 외에도 데이터 이동에 많은 시간이 소모되며 이로 인해 데이터를 필터링해 최소한의 데이터만 저장해야 하는 불편함이 있습니다. 한편, 메모리와 디스크 리소스 비용이 계속 하락하면서 기업의 온프레미스 투자가 유리해지고 있습니다. 더불어 클래스 메모리 및 SDN(소프트웨어 정의 네트워크)과 같은 비용에 도움을 주는 솔루션을 활용하면, 한때 퍼블릭 클라우드의 큰 매력이었던 유연성, 확장성, 중복성의 간극이 상당부분 사라집니다. 셋째, 기업은 데이터 보호와 백업을 더욱 쉽게 할 수 있습니다. 클라우드 업체도 데이터 프라이버시에 대해 엄격하지만 온프레미스 환경에서 데이터를 저장하고 백업 받고 복구하는 것보다 더 안전할 수 없습니다. 물론 민감한 정보를 로컬 환경에 저장하는 것 역시 문제 제기가 있겠지만 최소한 고객 데이터가 사라졌을 때 무엇을 어떻게 해야 하는지 알 수 있습니다. 규정 준수 측면에서도 각 국마다 개인정보보호 규정이 달라 우발적인 규정 위반 가능성이 있습니다. 이러한 우려를 줄이는 방법은 애플리케이션을 특정 위치의 온프레미스 환경에서 실행하는 것입니다. 넷째, 대역폭 문제에서 자유로운 장점이 있습니다. 클라우드 환경에서 빅데이터 시스템을 활용하는 기업은 빅데이터 시스템에서 생성되는 데이터가 높은 대역폭을 요구하면서 자사 데이터 센터보다 훨씬 더 많은 운용 비용을 지불합니다. 컴퓨팅은 온디맨드이므로 탄력적인 클라우드가 유리할 수 있지만 스토리지는 매일 매초 비용이 계속 증가하고 있는 사실을 알아야 합니다. 클라우드냐 온프레미스냐 고려할 점 클라우드 송환은 비용면에서 매력적이지만 매우 도전적인 과제입니다. 클라우드 서비스 공급자는 일반적으로 클라우드에서 빠져나오기 상당히 어렵게 계약하고, 해체됐거나 아예 존재하지 않던 온프레미스 환경을 준비하기 위해 기업의 재무와 조직 운영에 큰 영향을 미치기 때문입니다. 게다가 애플리케이션을 온프레미스 데이터센터로 마이그레이션하는 경우 기업은 클라우드의 확장성, 유연성, 가용성, 탄력성을 유지하기 힘들고 자체 데이터센터가 클라우드에 비해 더 안전하다는 보장을 하기도 어렵습니다. 따라서 이런 경우에는 애플리케이션에서 실행 중인 환경에 대한 종속성이 있는 부분과 단순히 데이터를 관리하는 부분을 분리하면 혼란을 최소화할 수 있습니다. 처음부터 클라우드 환경을 고려해 서비스를 설계했다면, 워크로드를 다시 데이터센터로 되돌리기 위해서는 어느 정도의 재설계가 필요하며 빅데이터에 의존하는 기업은 상당한 마이그레이션 작업을 각오해야 합니다. 이처럼 클라우드 송환은 매우 어려운 과제입니다. 따라서 처음부터 워크로드를 퍼블릭 클라우드로 이전하는데 매우 신중한 입장을 취하는 것이 가장 중요합니다. 그래서 최근에는 기업들이 클라우드 환경을 고수하는 것보다는 필요한 경우 클라우드와 온프레미스 환경을 융합하는 하이브리드 클라우드 전략을 선택하는 경향이 있습니다. 모든 서비스를 클라우드로 전환하는 것이 아니라, 단기간에 트래픽이나 사용자가 급속히 늘어날 가능성이 있거나, 클라우드 서비스를 활용해 서비스를 빠르게 런칭해야 하는 경우로 한정하는 것이 필요합니다. 우리나라에서도 많은 기업들이 이미 클라우드가 갖고 있는 단점들을 경험하고 온프레미스로 전환하고 있습니다만, ‘클라우드 전환’이라는 큰 물결 아래 ‘클라우드 송환(Cloud Repatriation)’에 대한 논의는 제한적입니다. 우리나라의 클라우드 전환율이 세계시장과 비교해 볼 때 현저히 낮지만, 오히려 클라우드 환경의 문제를 이미 경험한 나라들의 교훈을 미리 받아들인다면 학습비용을 줄일 수 있을 것으로 기대합니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. 대규모 인프라가 존재하는 데이터센터 및 클라우드 환경에서 대용량 데이터 처리에 대한 높은 성능을 확인할 수 있습니다. 고유의 특허 기술을 통해 수천대의 장비에서 발생되는 데이터들을 안정적으로 수집하고 빠르게 처리할 수 있습니다. [출처] John Edwards, "클라우드의 온프레미스 송환이 타당한 5가지 경우", IT WORLD, 2019.04.16 Steven J. Vaughan-Nichols, "모두가 '클라우드' 외칠 때 '로컬 서버' 선택해야 하는 이유, IT WORLD, 2022.07.27 Andy Patrizio, "기업 71%, 2년 이내 클라우드에서 온프레미스로 복귀할 것", IT WORLD, 2022.06.29 Clint Boulton, "'전진 위한 후퇴'··· 클라우드서 온프레미스로 송환하는 기업들", CIO Korea, 2020.03.30 Brian Adler, "Cloud Computing Trends: Flexera 2022 State of the Cloud Report", flexera, 2022.03.21
2023.04.07
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
옵저버빌리티는 "무슨 일이 일어났는가?", "왜 그런 일이 일어났는가?"와 같은 질문에 답하는 것을 목표로 합니다. 옵저버빌리티는 IT시스템 전체적인 관점에서 문제를 신속하게 식별하고 근본 원인을 분석할 수 있습니다. 최근 IT 인프라의 종류가 다양해지고, 수가 기하급수적으로 많아지고, 복잡도가 급격히 증가함에 따라 IT 인프라의 가용성을 보장하기 위해서 전통적으로 행해지던 모니터링의 범주를 넘어서는 옵저버빌리티라는 개념이 등장했습니다. 모니터링과 옵저버빌리티라는 두 용어들은 때로는 비슷한 개념으로 서로 바꿔서 사용되기도 하지만, 시스템 관리에 대한 다른 접근 방식을 나타냅니다. 이번 블로그에서는 모니터링과 옵저빌리티의 차이점을 알아보겠습니다. Monitoring이란? 모니터링은 IT 시스템에서 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 데이터를 수집하고 분석해 성능과 동작을 파악하는 것입니다. 모니터링의 목표는 시스템에 문제가 있는 것으로 추정되는 이상한 동작이나 조건을 감지하고 경고하는 것입니다. 모니터링은 종종 문제를 나타낼 수 있는 특정 메트릭이나 이벤트에 대한 알람 설정을 포함합니다. 이 접근 방식은 일반적으로 예측 가능한 개별 시스템에 사용합니다. 전통적인 모니터링 방법은 일정한 간격으로 수집되는 사전 정의된 메트릭이나 로그에 의존합니다. 예를 들어, 서버의 CPU 사용량을 1분마다 확인하고 사용량이 특정 임계값을 초과하면 알람을 보낼 수 있습니다. 이러한 방식은 특정 유형의 문제를 감지하는 데 효과적이지만, IT 시스템 동작을 전체적으로 파악하거나 근본 원인 분석에 대한 심층적인 인사이트는 제한적일 수 있습니다. Observability란? 옵저버빌리티는 IT 시스템 관리에 대한 새로운 접근 방식으로, 시스템의 내부 동작을 이해하는 것에 중점을 둡니다. 옵저버빌리티의 목표는 시스템의 동작을 깊이 이해하고 발생 가능한 모든 문제의 근본 원인을 파악하는 것입니다. 옵저버빌리티는 메트릭, 추적, 로그 등을 실시간으로 수집하고 분석하는 것을 포함합니다. 참고로 메트릭은 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 시스템 성능과 관련된 정량적 정보를, 추적은 요청의 호출 순서 및 응답 시간과 같은 시스템 동작에 대한 정보를, 로그는 사용자 작업 및 오류를 포함해 시스템 활동을 제공합니다. 옵저버빌리티가 필요한 이유 옵저버빌리티는 복잡하고 동적인 시스템에서는 문제를 빠르게 찾고 해결하기 위해 시스템의 동작과 성능을 측정하고 분석할 필요가 있습니다. 옵저버빌리티를 통해 다음과 같은 이점을 얻을 수 있습니다. 옵저버빌리티가 필요한 이유 1. 문제 해결 속도 향상: 옵저버빌리티를 사용하면 복잡한 시스템에서 발생하는 문제를 더욱 빠르게 파악할 수 있습니다. 이를 통해 시스템 장애나 성능 저하와 같은 문제를 빠르게 해결할 수 있습니다. 2. 전체 시스템 이해도 증가: 옵저버빌리티를 사용하면 전체 시스템의 내부 동작을 쉽게 이해할 수 있습니다. 이는 문제를 예방하거나 빠르게 대처할 수 있도록 도와줍니다. 3. 대규모 시스템 관리 가능: 대규모 분산 시스템에서는 옵저버빌리티가 필수적입니다. 이를 통해 수많은 서버, 네트워크, 애플리케이션 등에서 발생하는 다양한 데이터를 수집하고 분석할 수 있습니다. 4. 문제 예방 및 최적화: 옵저버빌리티를 사용하면 시스템의 성능을 지속적으로 모니터링하고 문제를 예방할 수 있습니다. 또한 시스템의 최적화를 위해 데이터를 분석하고 개선할 수 있습니다. 따라서, 옵저버빌리티는 복잡한, 여러 개의 세분화된 시스템으로 구성된 전체 시스템에서 필수적인 도구로, 시스템의 성능 개선과 장애 대응 등 다양한 측면에서 가치를 제공합니다. Monitoring vs Observability 모니터링과 달리, 옵저버빌리티는 사전에 정의된 메트릭과 알람에 의존하는 대신, 시스템 동작의 더욱 전체적인 관점을 제공합니다. 옵저버빌리티는 여러 소스에서 수집한 데이터를 같이 분석함으로써 쉽게 찾을 수 없는 어떤 패턴과 상관관계를 발견하는 데 도움을 줄 수 있습니다. 이 접근 방식은 예측할 수 없는 동작을 가진 복잡한 시스템에서 특히 유용합니다. 모니터링과 옵저버빌리티의 또 다른 중요한 차이점은 사람의 개입 수준입니다. 모니터링은 특정 이벤트 또는 조건을 감지하고 해당 이벤트 또는 조건이 발생할 때 경고를 트리거하도록 설계되므로 모니터링을 설정하고 구성하는데 사람의 개입이 필요할 수 있지만 일단 도구가 셋업되면 사람의 개입 없이 자동으로 작동하는 편입니다. 반면에, 옵저버빌리티는 데이터를 해석하고 결정을 내리고 조치를 취하는데 IT 운영자의 전문 지식을 사용해 프로세스에 관여합니다. 이러한 접근 방식은 시간이 더 많이 소요될 수 있지만, 문제의 근본 원인에 대한 더 많은 인사이트를 제공할 수도 있습니다. 올바른 어프로치 선택하기 모니터링과 옵저버빌리티는 각각 장단점이 있으며, 시스템의 특정 요구사항에 따라 어떤 접근 방식을 선택할지 달라져야 합니다. 비교적 상황 파악이 어렵지 않은 간단한 시스템의 경우, 전통적인 모니터링 도구로 충분할 수 있습니다. 그러나 복잡하고 시스템이 분산된 경우, 시스템 동작을 완전히 이해하기 위해 옵저버빌리티가 필요할 수 있습니다. 결국, 효과적인 시스템 관리의 핵심은 문제를 빠르게 감지하고 해결하기 위한 적절한 도구와 프로세스를 갖추는 것입니다. 모니터링 또는 옵저버빌리티를 선택하든, 시스템과 조직의 요구에 부합하는지 정기적으로 검토하고 개선하는 것이 중요합니다. 적절한 도구와 프로세스에 투자함으로써, 시스템의 신뢰성과 성능을 개선하고 비용이 많이 드는 다운타임과 서비스 중단을 피할 수 있습니다. Zenius EMS 브레인즈컴퍼니는 20년 이상 축적된 노하우를 바탕으로 레거시 환경은 물론 최근 더욱 복잡해지고 있는 클라우드 네이티브 시스템까지 모니터링과 옵저버빌리티 모두를 제공함으로써 고객이 원하는 방식으로 사용이 가능합니다. Zenius EMS는 SMS, NMS, APM 등 각 인프라별 모니터링을 통합해 시스템을 더욱 안정성 있게 관리하고 자동화된 장애대응 환경을 제공하며 객관적인 데이터 기반으로 리포팅이 가능한 지능형 IT 성능 모니터링입니다. 또한 쿠버네티스, 오픈 스택을 지원하는 클라우드 환경을 모니터링합니다. 국내 공공분야 관제 SW 1위, 제니우스의 상관관계 분석, 인공지능을 활용한 성능예측 등 옵저버빌리티 기술을 통해 다양한 시스템 레이어에서 성능, 장애, 구성에 대한 인사이트를 얻으시기 바랍니다.
2023.03.28
기술이야기
JPA 도입을 위한 고민_ORM 기술을 써야 하나?
기술이야기
JPA 도입을 위한 고민_ORM 기술을 써야 하나?
몇 해전에 새로운 버전의 ITSM을 개발하기 시작하면서 JPA 기술 도입을 두고 고민했던 내용을 이제는 한 번쯤 정리해야 할 시점이라고 생각했다. 비단 JPA뿐 아니라 Spring Boot, Thymeleaf, Kotlin과 같은 새로운 개발 기술이나 Git, Gradle, Slack, PR처리 등 새로운 업무 환경까지 상당한 변화를 시작한 프로젝트였기 때문에 고민되는 것이 한두 개가 아니었지만 가장 길고 심각하게 고민했던 부분이라 따로 기록을 남겨본다. 이 글은 기술적인 내용은 아니고 어떻게 보면 당연하고 일반적인 내용이지만 다음 기회에 새로운 기술, 환경, 프로세스에 대한 도입을 검토할 때 조금이나마 도움이 됐으면 하는 마음이다. 여기에선 기술적인 내용에 대한 설명을 덧붙이지 않는 것은 관련된 내용은 'JAVA', 'ORM', 'JPA' 등으로 검색만 해도 비슷한 글들이 넘쳐나는 상황에 하나 더 덧붙이는 건 별로 의미가 없어 보이기 때문이다. 1. ORM에 대한 갑을논박 ORM에 대한 검색을 해보면 정말 여기서 다시 얘기하고 싶지 않을 정도로 오랜 시간동안 많은 사람들의 많은 의견들이 쏟아져 나온다. 게다가 더욱 혼란스러운 점은 구구절절 옳은 말들이라는 점이다. 여기서 뭔가 딱 부러진 결론을 내는 것은 불가능하고 너무 많은 의견들을 접하면서 점점 혼란스러워졌다. 대표적으로 참고 삼아 [자바 ORM 표준 JPA 프로그래밍]을 쓰신 김영한님의 글로 추정되는 링크 하나 투척~ https://okky.kr/article/286812 2. 우리에게 중요한 것 2.1. 진입장벽 : 진입장벽… 이 높다한들 하늘 아래 뫼… 일까? 어떤 기술이든 진입장벽은 그 도입 여부를 결정하는 가장 중요한 요소이다. 개인적으로 스터디를 하거나 한번 써보고 싶은 마음에서라면 진입장벽이 높을수록 구미가 당기는 변태적인 성향이 있는 사람도 있겠지만 이게 업무적인 접근이고 다른 팀원들과 함께 해야 하는 것이라면 진입장벽이 높이에 따라서는 그 기술의 효과가 인정되어도 도입이 쉽지 않은 것이 사실이다. JPA는 많은 사람들이 진입장벽이 높은 편이라고 입을 모아 말한다. 검토를 위해 살짝 들여다 보았을때도 쉬워 보이진 않았다. 말 그대로 ORM을 잘 쓰기 위해서는 Object와 Model에 대한 깊이 있는 사전 지식과 그 둘을 Mapping하는 개념적인 체계가 머리 속에 있어야 충분히 활용할 수 있을 것 같았다. 진입장벽이란 것도 사실 상대적인데 당시에 판단으로 우리 팀에서 도입하기에 진입장벽은 중상(中上)이라고 생각했다. 잘 자리잡기 쉽지 않을 것이고 시간도 오래 걸리리라 생각이 들었다. 이러한 점을 만회할 장점이 있는지 고민이 필요했다. 2.2. 제품 특징 : 우리가 만드는 제품/프로젝트의 특징에 맞는가? 당시에 새롭게 시작되는 프로젝트에서 만드는 제품은 기존 Zenius ITSM 시스템의 새로운 버전이다. 업무적으로 여러가지 특징이 있지만 Model과 관련되어서는 상대적으로 복잡한 구조라 할 순 없었고 극단적인 성능과도 거리가 좀 있다. 상대적으로 깔끔하고 명확한 모델링이 훨씬 더 중요하다고 판단했고 이러한 면은 JPA도입에 대한 긍정적인 입장을 가지게 했다. 쿼리와 관련되어서 수많은 간단한 작업들을 효과적으로 할 수 있을거란 기대감… 만약 만들려고 하는 제품이 특정 RDBMS에 의존적이거나, 혹은 인수인계나 유지보수가 어려울 정도로 비즈니스부터가 복잡한 형태라서 JPA를 쓰면서도 많은 성능 튜닝과 Native Query를 사용해야 하는 상황이거나 한다면 상황은 약간 달라졌을 것이다. 제품의 특징과 더불어 현재 프로젝트의 특성도 같이 살펴봐야 한다. 레거시 시스템의 업그레이드인지, 이번 프로젝트처럼 완전히 새 판에서 시작하는 게 가능한 상황인지… 새로운 제품을 만드는 프로젝트가 납기일이 정해진 프로젝트보다 나은 점은 그나마 초기 학습과 관련된 투입을 감안하기가 좀 더 수월하다는 점이다. SI같은 성격의 프로젝트라면 내부 고객뿐 아니라 상대방 고객도 설득해야 하는 문제점이 더 크다. 그런 면에서 이번 프로젝트는 JPA를 도입하거나 적용하기엔 괜찮은 상황이라는 게 결론이었다. 2.3. 조직/인력 구조 : 바로 우리가 쓰는 기술이다. 기술도 중요하지만 우리도 중요하다. 제목처럼 아무리 좋은 기술이라도 우리에게 맞냐는 게 결정적이다. 아래와 같은 질문들을 던져 보았다. • 현재 구성원들의 사전 지식은 어느 정도인가? • 우리 회사나 우리 팀에서 향후 관련된 개발자를 계속 충원할 수 있는가? • 우리 팀은 새로운 기술을 공부하며 도입할 의지를 가졌는가? • 회사는 관련된 교육과 초기에 벌어질 삽질을 감내할 수 있는가? 결론적으로 반반이었다. 우리 팀은 JPA에 대해서 아는 바가 거의 없는 상태였다. 게다가 지금이야 JPA를 사용하는 사람들도 더 늘어난 것 같고 우리 회사의 위상도 달라졌지만 당시의 우리 회사의 규모나 채용 형태를 봤을 때 관련된 개발자를 충원하는 것도 쉽지는 않을 것 같았다. 반대로 새로운 기술 도입에 대해서 강한 의지까지는 아니라도 긍정적은 자세를 가진 팀원과 초기 삽질에 대해서 어느 정도 감내할 수 있는 회사라는 것이 당시의 생각이었다. 그래도 반이 어디냐…는 게 최종 결론이었다. 2.4. 재미 : 그래서 땡기냐? 이성적이고 객관적인 여러 사실들을 매트릭스화해서 평가를 하면서도 스스로에게 던지는 마지막 질문은… 그래서 땡기냐는 거다. 모든 수치가 부정적인데도 끝까지 미련을 버리지 못하고 하고 싶은 경우가 있고, 모든 결과가 긍정적인데도 뭔가 하기 싫은 경우가 많은데, 결국 그것들은 결과로 이어지더라. 리누스 토발즈가 커널을 업그레이드할 때 가장 중요한 점으로 “얼마나 재미”가 있냐는 점이라고 얘기 했다는데, 우리는 그 정도 레벨의 개발자는 아직(!) 아니지만 우리에게도 “재미”는 가장 중요한 결정요인 중 하나이다. 스스로에게 물어보자. 재미있어 보이나? 그리고, 당시에 나에게는 무척 설레었던 일이었음을 고백해야겠다. 3. 염려스러운 점 3.1. 회귀본능 아직 익숙하지 않은 상태에서 개발을 진행하다 보면 도무지 JPA에서 왜 이런 쿼리를 만들어내는지 이해하기 어려운 경우를 종종 만난다. 혹은 익숙한 SQL이 머리속에서 막 떠오르는데 JPA로 적용하기 위해서 이런저런 삽질을 하다 보면… 아… 그냥 쿼리를 직접 짤까? Native Query도 Mybatis도 지원한다던데… 분명 이런 순간이 올 것이라고 예상했다. 공부를 하는 것도 좋지만 회사에서 업무로 일정에 맞춰 무언가를 만들어내야 하는 압박감은 따로 누가 주지 않아도 가지고 있는 것이니… 침착하자. 익숙하지 않고 힘들다고 나도 모르게 무언가 자꾸 길을 벗어나고 있는 건 아닌지 계속 주의 깊게 들여다 봐야 한다. 결론적으로 지금에 와서 돌이켜보면 초반에는 의도대로 생성되지 않는 쿼리들에 당황하긴 했지만, 약간의 삽질 후에는 왜 그런 상황이 발생되는지 알기가 어렵지는 않았다. 언젠가는 복잡한 통계나 로직 때문에 Native Query를 쓰게 될 날이 오겠지만 아직은 아니다. 3.2. 학습곡선 도입하려는 기술에 따라, 혹은 구성원의 사전 지식에 따라 학습곡선은 상당히 다양한 형태로 나타나는데, 평균적으로 JPA의 학습곡선은 전반적으로 경사가 아주 완만하다고 판단했다. 즉 도입 검토 시점의 진입장벽은 그 자체로 염려스러운 점이었다. 그 얘기는 수준을 일정수준 이상으로 끌어올리기 위해서 많은 시간과 노력이 팀 차원에서 필요하다는 얘기였고 필요로 하는 사전지식도 꽤 있을 듯 했다. 게다가 여러 가지 이유로 개인별로 나타나는 학습곡선도 많이 다르리라 예상했다. 뭔가 기막힌 해결책이 있으면 좋겠지만, 책을 구매해서 읽고 유료 강의, 무료 강의들을 공유하고… 서로서로 도와가며 공부하는 클래식한 정공법을 택했다. (그만큼 사실 효과는 기대하기 힘들다는 것도 알지만…) 지금 생각해보면 어떤 기술이나 프로세스든 누군가 소수의 인원이 먼저 출발해서 끌어줄 수 있는 형태가 되는 것이 제일 나은 것 같다. 서로서로 도움을 주면서 같이 커가는 모양새가 될 수 있을 듯 한데 우리는 그렇지는 못했고 모두가 공평(?)하게 모르는 상태에서 스타뜨~ JPA의 도입에 대한 학습곡선은 최종적으로 도입을 결정하는데 마지막까지 고민을 하게 했던 점이었다. 3.3. Mapper는 누가? 자, 우리는 Object도 Model도 이제까지 다 개발자가 했다. Object야 당연히 개발자가 만들어야 하겠지만 큰 기업에서처럼 DBA가 있거나 화면을 퍼블리싱해주거나 하지 않는다. 우리는 우리가 화면, 미들웨어, DB까지 직접 만들고 컨트롤 해왔다. 그게 좋은 것이냐의 문제를 여기서 얘기하자는 게 아니라 현실이라는걸 얘기하는 거다. 우리 팀원 모두가 JPA 초보이다. Mybatis를 사용하고 Spring을 사용해봤다고 하지만 ORM이나 SQL Mapper에 대한 심도있는 고민은 부족한 상황. 앞으로 JPA에서 Object와 Model은 그렇다고 해도 Mapper역할은 또 필요하지 않을까? 그런 가이드는 또 누가 해야 하나… 모든 개발자에게 알아야 한다고 말할 수 있지만 모든 개발자에게 팀에서 잘하는 메인이 되라고 하기엔 좀 애매한 영역이란 게 항상 있다. 프로그램의 오브젝트와 DB의 모델을 연결하는 Mapper를 잘 구성할 경험이 많은 개발자가 없다는 점은 학습곡선과 더불어 JPA 도입을 망설이게 했던 주요 고민이었다. 결론적으로 선임 개발자를 중심으로 착실히 스터디를 잘 해주었고 제품의 특성상 그렇게 복잡한 관계를 매핑할 일이 많지 않아서인지 초반에 몇 번 팀원들이 같이 머리를 싸매고 논의했던 것 외에 문제는 없었다. 4. 결론(현재까지는…) 도입 결정 후 꽤 긴 시간 제품을 만들고, 이제는 고객사에 납품도 하면서 기능을 계속 추가하고 있는 이 시점에서 돌아보면, 어떤 부분은 팀원들이 너무 잘해주고 있고, 어떤 부분은 전혀 예상하지 않은 형태로 진행이 돼서 난감한 경우도 있지만 전체적으로는 아주 만족하고 있다. 정확하게 측정을 하진 못했지만 쿼리를 직접 짜면서 개발을 진행하는 것보다 생산성 측면에서 확실히 나아졌다고 느끼고 있고 그 효과는 초반에 투입된 시간에 비례해 앞으로 더욱 더 기대된다. 만족하고 있다고는 했지만 여기서 만족이라는 게 성과나 기술적인 완성도에 대한 절대적인 만족은 아니다. 다만 아직 우리 제품에 대한 아쉬움을 가지는 것이 JPA 때문은 아니라는 점은 확실하다. JPA가 유행에 따라 생긴 기술이라고 하기엔 너무 오래된 기술이지만 그래서인가 ORM 자체에 대한 흥미도 점점 더 해가고 있다. JPA도 ORM에 대한 가장 최근의 시도중 하나겠지만, 앞으로 어떤 식으로 발전해 나갈지, 그에 따른 개발 업무는 또 어떤 식으로 변화가 있을지도 궁금하고… 어쨌든, 지금으로서는 다시 돌아가진 않을 생각이다.
2023.01.03
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
기술이야기
[통합로그관리] Filebeat에서 안정적으로 하드웨어 자원 사용하기
Filebeat는 Elastic Stack에서 사용하는 경량(light-weight) 데이터 수집기로 logstash 대비 상대적으로 리소스(CPU와 RAM)를 상당히 적게 소모한다는 장점이 있습니다. 또, Filebeat는 간단한 필터 기능도 제공합니다. 하지만 말 그대로 간단한 필터 기능이라 한번에 대용량의 파일을 관리해야 하는 경우 호스트 서버에 부담이 갈 정도로 많은 리소스를 사용할 수 있습니다. 따라서 브레인즈컴퍼니가 운영하는 통합로그관리 에이전트는 호스트의 서버 환경에 따라 filebeat 에이전트의 설정 파일을 수정해서 안정성을 제공하고 있습니다. 본 내용은 Filebeat 리소스 점유율이 높을 때 트러블슈팅 관련 설정 수정사항입니다. 수정에 필요한 기본 파일 위치 linux : /etc/filebeat/filebeat.yml docker: /usr/share/filebeat/filebeat.yml filebeat 프로세스 메모리 확인하는 방법 top -d 1 | egrep "PID|filebeat" 수정에 앞서 filebeat의 메인 컴포넌트인 harvester의 개념을 간략하게 설명하겠습니다. 하나의 harvester는 하나의 파일을 읽어드립니다. harvester가 실행 중인 경우 파일을 한 줄씩 읽습니다. 각 파일 당 하나의 harvester가 실행됩니다. 상단의 이미지를 보면 filebeat의 컴포넌트인 input과 harvester가 보입니다. 또한 filebeat이 harvester를 관리하며 어느 파일을 읽을지 관리하는걸 알 수 있습니다. harvester가 실행 중인 경우 파일 설명자(File Descriptor) 열린 상태로 유지됩니다. 이는 파일이 삭제되거나 파일명이 변경된다 하더라도 파일을 계속 읽게 해줍니다. 하지만 파일 설명자는 harvester가 닫힐 때까지 디스크 공간을 예약합니다. 1. filebeat.inputs: 2. - type: filestream 3. id: my-filestream-id 4. paths: 5. - /var/log/system.log 6. - /var/log/wifi.log 7. - type: filestream 8. id: apache-filestream-id 9. paths: 10. - "/var/log/apache2/*" 11. fields: 12. apache: true 13. fields_under_root: true <filebeat에서 제공하는 input example> 1. scan_frequency 파일비트가 설정된 filebeat_inputs의 path에 있는 파일들의 갱신 여부를 체크하는 주기입니다. 너무 길게 설정하면 한번에 많은 파일들을 수집하게 됩니다. 반대로 너무 짧게 설정하면 스캔을 너무 잦게 해서 CPU점유율이 올라갑니다. 적당한 조절이 필요합니다. 기본값은 10초입니다. Scan_frequeny가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency 만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 2. backoff Backoff 옵션은 파일비트가 얼마나 더 적극적으로 크롤링 하는지 지정합니다. 기본값은 1인데 1일 경우 새 줄이 추가될 경우 1초마다 확인한다는 의미입니다. Backoff가 동작하는 방식은 아래와 같습니다. harvester 읽기 종료 또는 파일 삭제 → scan_frequency만큼 대기 → 파일 갱신 확인 → 파일 갱신 시 새 harvester 시작 → 파일 갱신 시 Backoff 시간 마다 다시 확인 3. max_procs 파일비트에서 동시에 사용 가능한 최대의 cpu코어의 숫자를 설정합니다. 예를 들어32 CPU코어 시스템에서 max_procs를 1로 설정한다면 cpu사용률은 3.2%(1/32)를 넘지 않습니다. max_procs 설정돼 있으면 harvester가 아무리 많이 생성돼도 cpu의 코어 수만큼 CPU를 점유합니다. 4. harvester_limit harvester의 수가 OS가 감당할 수 있는 파일 핸들러 개수를 초과할 때 사용합니다. 한 input마다 설정되므로 inputs이 5개 선언돼 있으면 해당 input 컴퍼넌트의 harvester 개수 최대치는 5개입니다. 기본값은 0인데, 0일 경우 harvester가 무제한으로 생성 가능합니다. 리소스 관리 최적화에도 유용한데 예를 들어, input1이 input2보다 파일 개수가 3배 많고 중요성이 높을 때 3배 높은 값을 설정하는 것이 좋습니다. 5. close_eof harvester에 의해 파일이 수집되고 있을 때, EOF(End of File)에 도달하는 즉시 파일을 닫습니다. 파일이 계속 갱신된다면 데이터가 유실될 수 있는 여지가 있습니다. [참조] https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-input-log.html
2022.11.17
기술이야기
통합로그관리가 필요한 3가지 이유
기술이야기
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
1
2
3