반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
임형섭
2024.03.04
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
지난 포스팅을 통해
NMS의 기본 개념
과
NMS의 구성요소와 역할
에 대해서 살펴보았는데요. 오늘은
네트워크 정보 수집을 위한 다양한 프로토콜
에 대해서 자세히 알아보겠습니다.
네트워크 프로토콜(Network Protocol)은 네트워크에 연결된 장비 간의 메시지 흐름을 통제하고 관리하는 기본적인 절차와 규칙을 정한 규약입니다.
웹 브라우저, 파일 전송, 이메일 송수신, 미디어 스트리밍 등과 같은 모든 온라인 활동을 가능하게 하기 때문에 네트워크 정보 전달의 핵심요소라고 할 수 있죠.
이번 시간에는 주요
네트워크 프로토콜인 ICMP, SNMP
를 중점적으로 알아보겠습니다.
ㅣICMP는 무엇이고 어떻게 동작하는가?
ICMP(Internet Control Message Protocol)는 주로 네트워크의 경로상의 문제나, 호스트(단말)의 문제 등을 파악할 때 사용하는 프로토콜인데요. 대표적인 서비스가 ping입니다. 구체적인 동작원리를 살펴보면 다음과 같습니다.
오류 보고
◾ 네트워크에서 데이터를 보낼 때 오류가 발생하면, 오류를 발생시킨 장비(예: 라우터, 스위치)는 오류 정보를 담아 ICMP 메시지를 처음 보낸 사람에게 전송합니다. 이를 통해 무엇이 잘못됐는지 정확히 파악하고 문제를 해결할 수 있습니다.
◾ 예를 들어 한 컴퓨터에서 인터넷을 통해 데이터를 보내는데, 그 데이터가 목적지에 도달하지 못하면 ICMP가 '이 주소로는 데이터를 배달할 수 없어!'라고 알려주는 역할을 하죠. 이렇게 사용자나 네트워크 관리자가 문제를 알리고 대응할 수 있게 도와주는 게 ICMP의 주요 역할입니다.
[그림] ICMP 동작 방식
진단 및 테스트
◾ 네트워크의 연결 상태나 성능을 테스트하기 위해 ICMP 에코 요청과 에코 응답 메시지를 사용합니다. 이를 통해 네트워크의 지연시간(latency)이나 패킷 손실(packet loss) 등을 측정할 수 있습니다. '핑(ping, Packet INternet Groper)'을 대표적인 예로 들 수 있습니다.
◾ 쉽게 표현하면 '너 지금 연결 잘 되어 있니?'라고 물었을 경우 대상 장비가 '응, 잘 되어 있어!'라고 대답하면 연결이 잘 되어 있는 것이고, 대답이 없거나 늦는 것과 같은 문제를 식별하는 것이죠.
ICMP도 좋은 도구이지만, 네트워크의 복잡성이 빠르게 증가하고 호스트 수가 증가하면서 ICMP만으로는 네트워크 관리가 어려워지는 문제가 발생했는데요. 이를 개선하기 위해서 탄생한 것이 바로 SNMP입니다.
우선 SNMP의 히스토리부터 살펴보겠습니다.
ㅣSNMP 히스토리: 각 버전별 개념과 차이점은?
SNMP(Simple Network Management Protocol)는 1988년에 아래의 세 가지 니즈에 부합하기 위해 등장했습니다.
◾ ICMP보다 많은 기능의 탑재
◾ 네트워크 문제를 직관적이고 쉽게 해결할 수 있어야 함
◾ 표준화된 프로토콜의 사용
이후 몇 가지 버전을 거쳐서 현재는 네트워크 장비를 모니터링하기 위한 프로토콜로 자리를 잡아서 대부분의 NMS 상에서 이용되고 있습니다.
잠깐 SNMP의 처리단계를 살펴보면, SNMP는 Get/Set/Trap의 단순 명령 구조로 구성되는데요, 메시지 타입별 역할은 아래와 같이 정리할 수 있습니다.
위와 같은 처리단계를 가지고 있는 SNMP는 보안 기능 강화 및 기능 개선을 위해서 초기 v1 버전에서 v3 버전까지 업그레이드됐습니다.
각 버전은 보안, 성능, 유연성 등의 측면에서 발전되었으며 현재는 SNMPv2가 가장 많이 사용되고 있죠. SNMP 버전 별 특징에 대해서 자세히 알아보겠습니다.
SNMP v1
가장 초기에 만들어진 프로토콜로 기본적인 정보만을 주고받아서 네트워크 장비들의 상태를 확인하고, 간단한 명령 정도만 내릴 수 있습니다. 보안에 많이 약한 편이고, 정보를 주고받을 때 특별한 암호화나 보호 방법을 사용하지 않기에 정보가 노출될 위험이 있습니다.
SNMP v2
SNMPv1의 단점을 해결하기 위해 개발된 버전입니다. 보안 기능과 네트워크 과부하, 관리 효율성 등에 대한 기능이 향상되었습니다.
MIB(Management Information Base) 구조를 개선하여, 새로운 데이터 타입과 객체 식별자(프로그래밍에서 특정 객체를 식별하는 데 사용되는 값이나 이름)을 도입했습니다. 이로써 더 많은 종류의 데이터를 효과적으로 다룰 수 있게 되었지만, v1과 호환이 안되는 문제가 있어 상용화에는 실패했습니다.
SNMP v2c (Community-Based Security)
SNMPv2c는 '커뮤니티 기반' 방식을 사용하며 'Community String' (공동체 문자열)을 이용합니다. Community String은 정보를 주고받기 위해 인증 과정에서 비밀번호를 사용하는 것으로, 학교에서 특정 비밀번호를 알고 있는 사람들만 특정 정보를 볼 수 있게 하는 것과 비슷합니다.
하지만 비밀번호가 복잡하지 않은 편이라, 조금 더 높은 보안을 필요로 하는 경우에는 적합하지 않을 수 있습니다. 현재 가장 많이 사용되고 있는 버전입니다.
SNMP v3
보안과 관리 기능을 대폭 강화한 버전입니다. SNMPv3는 정보를 주고받을 때 강력한 인증과 암호화를 사용하여, 네트워크 상의 중요한 정보를 안전하게 지킬 수 있습니다.
또한 복잡한 네트워크 환경에서 사용자가 많을 경우에도, 각 사용자의 접근 권한을 관리할 수 있는 기능이 있습니다. 하지만 이전 버전들보다 더 복잡한 보안 모델과 설정 등의 이유로 널리 사용되고 있지는 않습니다.
[그림] SNMP 버전과 수를 한눈에 볼 수 있는 제니우스 EMS 화면
참고로 SNMP에는 위와 같이 다양한 버전이 있기 때문에 모든 NMS는 제니우스처럼 어떤 버전으로 수집했는지와 수를 파악할 수 있어야 합니다.
이제 SNMP에 대해서 조금 더 자세하게 살펴보겠습니다.
ㅣSNMP 자세히 보기: MIB의 개념과 구조
MIB(Management Information Base)는 관리 정보 기반이라고 불립니다. SNMP를 통해 관리되어야 할 정보나 자원들을 모아둔 것으로, Manager와 Agent 간 정보를 주고받는 정보의 집합체입니다.
MIB에는 SNMP를 통해 주고받는 정보가 어떤 의미를 가지고 어떻게 사용될 수 있는지에 대한 정의가 포함되어 있습니다. 또한 각각의 정보는 '객체'라고 불리며, 이 객체들은 계층적으로 구성되어 있기에 관리하고자 하는 정보를 쉽게 찾을 수 있게 도와주죠.
대표적으로 CPU 사용량, 메모리 사용량, 포트의 up/down 같은 상태 정보 등이 MIB에 포함됩니다. 마치 항해사가 바다를 항해하기 위해 지도를 사용하는 것처럼, MIB를 통해 네트워크의 상태를 정확히 파악하고 필요한 조치를 취할 수 있습니다.
MIB의 구조를 자세히 살펴보면 우선 큰 나무를 뒤집어 놓았다고 생각한다면 이해하기 쉽습니다. 큰 나무의 밑동(Root) → 각각의 가지(Branches) → 잎사귀(Leavers)로 나누어져 내려오는 형태인데요, 부분별로 자세히 살펴보겠습니다.
◾
밑동(Root):
모든 MIB 트리의 시작점으로, 'iso(1)', 'org(3)', 'dod(6)', 'internet(1)' 등으로 구성되어 있습니다. 여기서 'internet'은 네트워크 장비와 관련된 표준 MIB를 나타냅니다.
◾
가지(Branches):
밑동에서 나온 큰 가지들은 네트워크 장비의 다양한 부분을 나타냅니다. 예를 들어 'mgmt(2)' 가지는 일반적인 관리 정보, 'private(4)' 가지는 각 제조업체의 고유 정보 등을 의미합니다.
◾
잎사귀(Leaves):
가장 작은 단위의 정보를 나타내는 부분으로 특정 장비의 상태, 성능 지표, 설정값 등 구체적인 데이터가 저장됩니다.
MIB에서는 네트워크 장비의 정보가 여러 '분류'로 나누어져 있는데, '네트워크 인터페이스'라는 분류 아래에는 네트워크 카드의 상태, 속도, 전송된 데이터의 양과 같은 정보들이 담겨 있습니다.
MIB는 복잡해 보일 수 있지만, 네트워크 장비와 관련된 정보를 체계적으로 관리하고 접근할 수 있도록 설계되어 있습니다. 이 구조 덕분에 네트워크 관리자는 네트워크의 건강 상태를 쉽게 체크하고 필요한 조정을 할 수 있습니다.
다음으로는 MIB 내의 각 객체를 고유하게 식별하는 OID에 대해서 알아보겠습니다.
ㅣSNMP 자세히 보기: OID 확인 방법과 수집항목
OID(Object Identifier)는 MIB 내에 포함되어 있는 각 개별 정도에 대한 ID 값입니다. 아래 그림에서 볼 수 있듯이, 트리의 하단 값이 OID인데 MIB의 각 개별 정보에 대한 ID를 의미합니다.
[그림] OID Tree 구조
대형 도서관에서 원하는 책을 찾을 때 책의 번호를 확인하여 빠르고 정확하게 찾는 것처럼, 특정 오브젝트의 ID(Num)을 부여한 게 OID입니다. OID는 포함하고 있는 각 정보를 숫자로 표현합니다.
◾
Enterprise OID:
네트워크 업계에서 공통으로 사용하는 OID
◾
Private OID:
각 네트워크 벤더사에서 사용하는 독자적인 OID
예를 들어 Juniper Networks라는 네트워크 스위치 벤더에서 사용하고 있는 OID 값을 [1.3.5.6.1.9 ]라는 전용 OID 값을 사용한다고 가정하면, Juniper Networks 라우터의 경우 뒤에 라우터 제품별 OID '11'이 더 붙은 [1.3.5.6.1.9.11 ] 형태의 OID로 구성됩니다.
[그림] 제니우스 예시 화면
지금까지 네트워크 모니터링에 필요한 ICMP, SNMP 그리고 MIB, OID에 대해 살펴봤습니다. 참고로 제니우스(Zenius)-NMS에서는 OID 사전을 제공하고 있으며, 이를 통하여 관리하고 싶은 항목의 MIB 항목 및 OID 정보를 쉽게 찾을 수 있습니다.
이제 SNMP의 주요 개념 중 하나인 SNMP Trap에 대해서 알아보겠습니다.
ㅣSNMP Trap의 개념 그리고 특징은?
Manager(관리자)는 Server(Agent)로 메시지 요청(Polling)을 하게 되고, Server(Agent)는 응답(Notifying)을 하는 방식으로 진행됩니다.
그런데 Server가 비정상적인 이벤트를 감지하면 Manager의 Polling을 기다리지 않고 바로 Manager에게 메시지를 보내는데요, 이 긴급 메시지를 Trap(트랩)이라고 합니다. 우리가 날씨에 대해서 찾아보지 않아도 폭설이 예상될 때 폭설을 경고하는 자동 알림 시스템과 비슷한 개념입니다.
[그림] SNMP 프로토콜 동작 방식
SNMP Trap은 일반적으로 높은 CPU 사용량이나 디스크 공간 부족과 같이 해결해야 할 문제를 나타냅니다. 중앙 모니터링 시스템으로 전송되어 분석 및 조치를 취할 수 있죠. 이를 통해 Manager는 큰 문제가 발생하기 전에 잠재적인 문제를 신속하게 식별하고 해결할 수 있습니다.
SNMP Trap의 방식과 기능을 네 가지로 나누어 살펴보겠습니다.
(1) 비동기적 알림
SNMP Trap는 주기적인 폴링이 아닌, 이벤트 기반의 알림을 통해 즉각적으로 대응할 수 있도록 비동기적인 방법을 제공합니다.
(2) 실시간 알림
SNMP Trap은 이벤트가 발생하는 즉시 알림을 제공하여, 실시간으로 네트워크 상태 및 장치 상태를 모니터링해서 문제 발생 시 즉각적인 대응과 조치를 가능하게 합니다.
(3) 이벤트 기반 모니터링
SNMP Trap은 장치나 응용 프로그램에서 특정 이벤트가 발생했을 때만 알림을 보내기 때문에, 불필요한 트래픽을 발생시키지 않습니다. 따라서 자원을 효율적으로 사용하면서 중요한 상태 변경을 식별합니다.
(4) 자동화된 대응
SNMP Trap을 사용하면 이벤트 발생 시, 자동으로 대응 조치를 취할 수 있는 자동화 시스템을 구축할 수 있습니다. 이를 통해 관리자의 개입 없이 특정 이벤트에 대한 대응을 효과적으로 수행할 수 있습니다.
[그림] Zenius Syslog 감시 설정 등록 페이지(위), Zenius Syslog 이벤트 페이지(아래)
이와 같은 SNMP Trap을 통해 빠르게 이상을 탐지하는 것이 중요한데요. 제니우스(Zenius)-Syslog와 Trap에서는 Syslog, Trap에 각각 특정 이벤트 조건을 설정하여 이벤트를 감지하고, 장애를 통보할 수 있는 기능을 제공하고 있습니다.
이제 마지막으로 SNMP 못지않게 네트워크 관리에 중요한 역할을 하는 Syslog, RMON에 대해서 알아보겠습니다.
ㅣ Syslog, RMON의 개념과 동작원리는?
Syslog
Syslog는 컴퓨터 시스템, 네트워크 장비, 보안 장비 등에서 일어나는 모든 상황과 변화를 서버에 기록하는 프로토콜입니다. 관리 대상인 장비에서 일어나는 모든 상황을 메모리에 기록하죠. 로그/오류 관리가 주 목적이고 Unix와 Linux에서 많이 사용됩니다.
대부분의 라우터와 스위치들은 Syslog 프로토콜을 이용하여 Log들을 Syslog 서버로 보내고, 수백수천 대의 장비에 일일이 접속하여 로그를 볼 수 없기 때문에 '중앙 집중식'으로 관리합니다.
작업 방식은 주로 Client-Push 모델로 이러우지고 있고, 장비에서 일어나는 모든 상황 변화를 Layer4 프로토콜이 메모리에 기록하며, Syslog 서버는 UDP 포트 514에서 메세지를 수신합니다.
Syslog 수집항목은 시스템 운영/네트워크/보안/애플리케이션 등과 관련된 로그를 수집 및 분석하고, 각 항목별로 오류와 트랜잭션 등에 대한 내용을 확인합니다.
출처ⓒ viettelco.net
RMON
RMON(Remote Network Monitoring)은 네트워크 장비나 서버에서 발생하는 트래픽과 문제들을 원격에서 감시하기 위해 만들어진 프로토콜로, SNMP보다 확장된 개념이라고 할 수 있습니다.
네트워크 관리자는 RMON을 통해, 네트워크의 성능을 측정하고 문제가 발생했을 때 신속하게 해결할 수 있습니다. 회사에서 인터넷이 느려지거나 연결이 되지 않을 때 RMON을 사용하면 원인을 빠르게 찾아내어 문제를 해결할 수 있죠.
RMON과 SNMP의 연관성을 우선 아래 이미지를 통해 살펴보겠습니다.
출처ⓒ dpstele.com/blog/what-is-rmon.php
좀 더 자세히 살펴보면
◾ RMON은 SNMP 위에서 작동하며, SNMP 보다 더 광범위한 데이터를 수집/분석할 수 있는 기능을 제공합니다.
◾ SNMP가 네트워크의 '기본적인 통신'을 담당한다면, RMON은 그 위에서 보다 '세밀한 관찰과 분석'을 가능하게 합니다.
◾ RMON은 SNMP의 특정 데이터를 사용하여 네트워크 트래픽 패턴이나, 성능 문제, 네트워크 내의 비정상적인 활동 등을 실시간으로 감시하고 기록할 수 있게 해줍니다.
◾ RMON에서 Probe라는 수행 장비를 사용하며, 네트워크 트래픽 및 통계 수집 그리고 성능 모니터링을 위해 활용합니다.
결과적으로 RMON의 기능을 통해 네트워크의 문제를 더 빨리 발견하고, 효율적으로 대응할 수 있죠.
마지막으로 SNMP, RMON, ICMP, Syslog의 주요 내용들을 아래 표를 통해 한눈에 살펴보겠습니다.
。。。。。。。。。。。。
지금까지 네트워크 정보 수집을 위한 다양한 프로토콜의 종류와 특징에 대해서 알아보았습니다. 효과적인 네트워크 관리를 위해서 혁신적인 기술들이 많이 개발되고 있는데요, 이를 활용해서 성공적으로 네트워크를 운영하시기를 바라겠습니다!
#네트워크 프로토콜
#SNMP
#RMON
#ICMP
#Syslog
임형섭
프리세일즈팀
안정적이고 효과적인 비즈니스 운영을 위한 고객 맞춤형 IT 인프라 모니터링 시스템을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
오늘날 대규모 인프라 환경에서 발생하는 방대한 데이터를 관리하기 위해 로그 모니터링과 로그분석은 필수적인 요소가 되었습니다. OpenSearch(및 Elasticsearch)는 이 분야의 사실상 표준으로 자리 잡았으나, 이를 활용하는 엔지니어와 분석가들은 강력한 기능의 이면에 있는 ‘Query DSL’이라는 높은 진입 장벽을 마주하곤 합니다. JSON 형식을 기반으로 하는 DSL은 검색 조건을 매우 정밀하게 정의할 수 있다는 장점이 있습니다. 하지만 쿼리가 복잡해질수록 로직이 깊게 중첩되어 가독성이 떨어지고 생산성이 저하되는 구조적 문제를 안고 있습니다. 특히 1분 1초가 급한 장애 상황이나 보안 침해 사고를 분석해야 하는 SIEM(보안 정보 및 이벤트 관리) 환경에서, 수십 줄의 JSON 괄호를 맞추는 작업은 민첩한 대응을 방해하는 실질적인 걸림돌이 됩니다. 이러한 문제를 해결하기 위해 등장한 것이 바로 PPL(Piped Processing Language)입니다. PPL이 제안하는 새로운 분석 방식을 살펴보기 전, 먼저 우리가 기존 DSL 환경에서 겪어온 실제적인 어려움들을 통해 왜 방식의 변화가 필요한지 짚어보겠습니다. 1. 데이터 탐색의 어려움 1.1. OpenSearch DSL OpenSearch(및 Elasticsearch)는 검색 엔진 시장의 사실상 표준으로 자리 잡았지만, 데이터 분석가나 엔지니어들에게는 한 가지 큰 진입 장벽이 존재했습니다. 바로 Query DSL(Domain Specific Language)입니다. DSL은 JSON(JavaScript Object Notation) 형식을 기반으로 하며, 검색 쿼리의 구조를 매우 정밀하게 정의할 수 있다는 강력한 장점이 있습니다. 하지만 이는 동시에 인간의 직관과는 거리가 먼 방식이기도 합니다. DSL은 쿼리가 복잡해질수록 JSON 객체가 깊게 중첩되는 특성이 있기 때문입니다. 예를 들어 단순한 GROUP BY 집계를 수행하려 해도 aggs안에 terms, 그 안에 다시 aggs를 정의해야 하는 피라미드 구조가 형성됩니다. 일반적으로 데이터를 탐색하는 과정은 "A를 찾고, B를 제외한 뒤, C로 묶어서 계산한다"라는 선형적인 사고를 따릅니다. 하지만 DSL은 이 모든 조건을 하나의 거대한 JSON 객체로 구조화해야 하므로, 작성과 수정 시 높은 집중력을 요합니다. 또한 로그를 분석하거나 장애 원인을 파악하는 긴급한 상황에서, 수십 줄의 JSON 괄호 짝들은 가독성과 생산성을 저하시키는 요인이 됩니다. <예시 1.1: 지난 1시간 동안 500 에러가 발생한 상위 5개 IP 추출하기 위한 DSL문> 1.2. PPL(Piped Processing Language) PPL은 이러한 구조적 복잡성을 해결하기 위해 등장했습니다. 이름에서 알 수 있듯이, 파이프(Pipe, |)를 통해 데이터를 순차적으로 처리하는 언어입니다. PPL이 가져온 변화는 단순히 문법의 형태를 바꾼 수준에 그치지 않습니다. 데이터에 접근하는 패러다임 자체를 선언적 구조(JSON)에서 절차적 흐름(Pipeline)으로 전환시킨 것입니다. 이는 Unix와 Linux에서 익숙하게 사용되는 명령어 파이프라인 철학을 데이터 검색 엔진에 이식한 결과이기도 합니다. 이러한 방식의 변화 덕분에 사용자는 더 이상 복잡한 JSON의 계층 구조를 설계할 필요가 없습니다. 대신 "데이터를 가져오고, 필터링한 뒤, 통계를 낸다"는 인간의 자연스러운 사고 흐름에 맞춰 질의를 작성할 수 있게 되었습니다. 이는 결과적으로 쿼리 작성 시간을 단축시키고, 분석가의 의도를 더욱 명확하게 코드에 투영할 수 있게 해줍니다. <예시 1.2: 예시 1.2와 동일한 로직을 PPL로 작성한 경우> 2. PPL의 핵심 특징 및 장점 PPL을 도입해야 하는 이유는 단순히 쓰기 편해서가 아닙니다. 이는 데이터 분석의 접근성(Accessibility), 가독성(Readability), 유연성(Flexibility) 측면에서 근본적인 이점을 제공하기 때문입니다. 2.1. SQL-like Syntax 데이터 업계에서 SQL은 가장 보편적인 언어입니다. PPL은 SQL의 문법적 특성을 차용하여 접근성을 높였습니다. SELECT, WHERE, LIKE 등 익숙한 키워드를 그대로 사용하므로, 새로운 도구 도입에 따른 저항감을 최소화합니다. 2.2. Pipe ($|$) PPL의 가장 강력한 무기는 | (파이프) 연산자입니다. 이는 쿼리를 논리적 단계로 분해합니다. 1단계: 전체 데이터 가져오기 (source=logs) 2단계: 필요한 부분만 남기기 (| where status=500) 3단계: 불필요한 필드 버리기 (| fields timestamp, message) 이처럼 하나의 문제를 단계별로 쪼개며 순차적으로 해결할 수 있습니다. 이러한 방식은 디버깅의 용이성도 증가시킵니다. DSL은 쿼리가 실패하면 전체 JSON 구조를 다시 살펴봐야 하지만, PPL은 파이프를 하나씩 끊어가며 어느 단계에서 데이터가 의도와 다르게 변형되었는지 즉시 확인할 수 있습니다. 2.3. Aggregation의 추상화 OpenSearch의 집계(Aggregation) 기능은 강력하지만 DSL 작성이 매우 까다롭습니다. PPL은 이를 stats 명령어로 추상화했습니다. 기존 DSL 방식에서 집계를 하려면 버킷(Buckets)과 메트릭(Metrics)의 개념을 이해하고, 이를 JSON의 계층 구조로 쌓아 올려야 했습니다. 하지만 PPL은 이 복잡한 과정을 우리가 흔히 쓰는 SQL 스타일로 탈바꿈시켰습니다. 간단한 시나리오인 “카테고리별 평균 가격 구하기”를 DSL로 작성하면 aggs 안에 그룹핑을 위한 terms를 정의하고, 그 안에 다시 계산을 위한 aggs를 중첩해야 합니다. 평균을 구한다라는 쿼리의 의도보다 괄호와 같은 문법적 구조에 더 신경 써야 합니다. 그룹핑 조건이 늘어날수록 JSON은 기하급수적으로 깊어집니다. 반면 동일한 시나리오를 PPL로 작성하면 stats 이라는 명령어로 간단하게 표현할 수 있습니다. stats: "집계를 시작하겠다"는 선언입니다. avg(price): "무엇을 계산할지" 명시합니다. (Metric) by category: "무엇을 기준으로 묶을지" 명시합니다. (Bucket) 단 한 줄의 코드로 DSL의 복잡한 로직을 완벽하게 대체할 수 있습니다. 2.4. 동적 필드 생성 데이터 분석을 하다 보면, 인덱스에 저장된 원본 데이터(Raw Data)만으로는 부족할 때가 많습니다. - 용량이 bytes 단위로 저장되어 있어 보기 불편한 경우 - 파일 경로와 파일 이름이 하나의 필드에 있어 각각 분리해야 하는 경우 - 보낸 용량, 받은 용량만 있고 총 용량이 없는 경우 이를 해결하기 위해 데이터를 재색인(Reindexing)하는 것은 너무 복잡한 과정입니다. 하지만 PPL은 eval 명령어 하나로 쿼리 실행 시점에 필드를 즉석에서 생성합니다. 바이트 단위를 메가바이트로 변환하여 새로운 필드 size_mb를 만드는 로직은 eval 명령어와 간단한 연산자를 이용하여 작성할 수 있습니다. 원본 데이터에는 size_mb라는 필드가 존재하지 않습니다. 하지만 PPL이 실행되는 순간 계산되어, 마치 원래 있던 필드처럼 where 절에서 필터링 조건으로 사용하거나 fields로 출력할 수 있습니다. PPL의 eval은 데이터 저장 구조(Schema)가 분석의 한계가 되지 않도록, 분석가에게 데이터를 재정의할 수 있는 강력한 권한을 부여하는 기능입니다. 3. PPL 문법 해부 앞서 PPL이 데이터 분석에 제공하는 근본적인 이점들을 살펴보았습니다. 하지만 이러한 장점들을 실무에 온전히 녹여내기 위해서는 PPL이 데이터를 처리하는 방식, 즉 문법의 구조를 정확히 이해하는 과정이 필요합니다. PPL의 문법은 단순한 규칙의 나열이 아니라, 데이터의 흐름을 제어하는 그 자체입니다. 각 명령어는 이전 단계에서 넘어온 데이터를 가공하여 다음 단계로 넘겨주는 '필터' 역할을 수행합니다. 마치 공장의 컨베이어 벨트 위에서 원재료가 각 공정을 거쳐 완성품이 되는 것과 같은 원리입니다. 그럼 지금부터 데이터 분석 현장에서 가장 빈번하게 사용되는 6가지 핵심 명령어를 통해 PPL의 구조를 깊이 있게 살펴보겠습니다. 3.1. source 모든 PPL 쿼리의 시작점입니다. SQL의 FROM 절에 해당하지만, PPL에서는 search source=... 형태로 명시합니다. 단일 인덱스뿐만 아니라 와일드카드(*)를 사용하여 여러 인덱스를 동시에 조회할 수 있습니다. search source=logs-* : 'logs-'로 시작하는 모든 인덱스 조회. 3.2. where 분석에 불필요한 데이터를 걸러내는 단계입니다. SQL의 WHERE 절과 동일합니다. where는 파이프라인의 가장 앞단에 위치시키는 것이 성능상 유리합니다. 처리해야 할 데이터의 총량을 줄여주기 때문입니다. where는 AND, OR, NOT 논리 연산자와 in, like 등의 비교 연산자를 모두 지원합니다. 3.3. eval 원본 데이터에는 없지만 분석 시점에 필요한 새로운 데이터를 만들어냅니다. 기존 필드 값을 이용해 계산을 하거나 문자열을 조합하여 새로운 필드를 정의합니다. 3.4. stats SQL의 GROUP BY와 집계 함수를 합친 개념입니다. 문법: stats <function>(<field>) by <grouping_field> 집계함수: count, sum, avg, min, max와 같은 통계 분석에 필요한 함수를 제공합니다. 3.5. fields 최종 사용자에게 보여줄 데이터를 다듬는 과정입니다. SELECT 절과 유사합니다. 수백 개의 필드 중 분석에 필요한 핵심 필드만 남깁니다 (+로 포함, -로 제외 가능). rename: 기술적인 필드명(예: req_ts_ms)을 비즈니스 친화적인 이름(예: Response Time)으로 변경하여 가독성을 높입니다. 3.6. sort & head sort: 데이터의 정렬 순서를 정합니다. - 기호를 붙이면 내림차순(DESC)이 됩니다. (sort -count) head: SQL의 LIMIT와 같습니다. 상위 N개의 결과만 잘라냅니다. 대량의 데이터 분석 시 결과를 끊어서 확인하는 데 필수적입니다. 4. 실전 예제 지금까지 PPL의 기본 개념과 주요 명령어들을 살펴보았습니다. 하지만 도구의 진정한 가치는 이론적인 문법을 아는 것에 그치지 않고, 이를 실제 복잡한 데이터 환경에 어떻게 적용하느냐에 있습니다. 이제 우리가 현업에서 흔히 마주할 수 있는 구체적인 시나리오들을 통해, PPL이 실무적인 문제들을 얼마나 직관적이고 효율적으로 해결하는지 단계별로 알아보겠습니다. 4.1. Brute Force 공격 탐지 상황: 과도한 로그인 실패(401 Error) IP 식별 1) search source=access_logs: 엑세스 로그 전체를 가져옵니다. 2) where status = 401: 전체 로그 중 로그인 실패 로그만 남깁니다. 3) stats count() as fail_count by client_ip: IP 주소별로 실패 횟수를 집계합니다. 이제 데이터는 개별 로그가 아니라 'IP별 요약 정보'가 됩니다. 4) where fail_count > 50: 50회 이상 실패한 의심 IP만 필터링합니다. (집계 후 필터링 - SQL의 HAVING 절과 유사) 5) sort -fail_count: 가장 공격 빈도가 높은 IP를 최상단에 노출합니다. 4.2. 카테고리별 매출 분석 상황: 상품 카테고리별 매출 현황과 평균 단가 확인 1) eval revenue = price * quantity: price와 quantity 필드를 곱하여, 원본 데이터에 없던 revenue(매출액) 필드를 실시간으로 계산해냅니다. 2) stats sum(revenue) as total_sales, avg(revenue) as avg_order_value by category: 카테고리 기준으로 총 매출(sum)과 평균 주문액(avg)을 동시에 계산합니다. 3) head 10: 상위 10개 카테고리만 추출하여 리포트용 데이터를 완성합니다. 4.3. 시간대별 트래픽 추이 시각화 상황: 지난 24시간 동안 웹 서버의 트래픽 변화 1) span(timestamp, 10m): 연속적인 시간 데이터를 10분 단위로 자릅니다. 2) stats count() as request_count by ...: 잘라낸 10분 단위별로 요청 수(count)를 셉니다. 결과: 이 쿼리의 결과는 그대로 라인 차트(Line Chart)나 바 차트(Bar Chart)로 시각화하기 완벽한 형태(X축: 시간, Y축: 횟수)가 됩니다. 5. PPL 성능 최적화와 고려사항 PPL은 사용자가 직관적으로 쿼리를 작성할 수 있게 돕지만, 그 이면에서는 방대한 데이터를 처리하는 무거운 작업이 수행됩니다. 도구의 편리함이 시스템의 부하로 이어지지 않도록, 쿼리 효율성을 고려하는 분석 습관을 갖추는 것이 중요합니다 5.1. 성능 최적화 방안 PPL 쿼리는 파이프라인 구조이기 때문에, 앞단에서 데이터의 크기를 줄일수록 전체 실행 속도가 기하급수적으로 빨라집니다. 1) where는 search 바로 뒤에 오는 것이 좋습니다. 데이터를 집계(stats)하거나 정렬(sort)한 뒤에 필터링하는 것은 낭비입니다. 불필요한 데이터를 메모리에 올리기 전에 where 절로 과감하게 잘라내야 합니다. 2) 필요한 필드만 명시하는 것이 좋습니다. OpenSearch 문서는 수십, 수백 개의 필드를 가질 수 있습니다. fields 명령어를 사용하여 분석에 꼭 필요한 필드만 남기면 네트워크 전송량과 메모리 사용량을 획기적으로 줄일 수 있습니다. 5.2. PPL vs DSL 언제 무엇을 써야 할까? PPL이 등장했다고 해서 기존의 DSL(Domain Specific Language)이 사라지는 것은 아닙니다. 두 언어는 태생적 목적이 다릅니다. 이 둘을 상호 보완적인 관계로 이해하고 적재적소에 사용하는 것이 좋습니다. 1) PPL을 써야 하는 경우 - 사람 중심, 탐색, Ad-hoc 분석, 운영/보안 PPL은 사람이 데이터를 봐야 하는 상황에 최적화되어 있습니다. 사고의 흐름이 끊기지 않고 빠르게 질문을 던지고 답을 얻어야 하는 상황입니다. * 상황 A: 장애 발생 시 긴급 원인 분석 "지금 500 에러가 급증하는데, 특정 API에서만 발생하는 건가?" 긴급 상황에서 복잡한 JSON 괄호를 맞출 시간은 없습니다. PPL로 빠르게 필터링(where)하고 집계(stats)하여 원인을 좁혀나가야 합니다. * 상황 B: 보안 위협 헌팅 "지난 1주일간 새벽 시간에만 접속한 관리자 계정이 있는가?" 데이터를 이리저리 돌려보고, 조건을 바꿔가며 숨겨진 패턴을 찾아내는 '탐색적 분석'에는 수정이 용이한 PPL이 압도적으로 유리합니다. * 상황 C: 비개발 직군의 데이터 접근 기획자(PM), 마케터, 데이터 분석가가 직접 데이터를 추출해야 할 때. SQL에 익숙한 이들에게 JSON DSL을 학습시키는 것은 비효율적입니다. PPL은 이들에게 데이터 접근 권한을 열어주는 열쇠가 됩니다. 2) DSL을 써야 하는 경우 키워드: 기계 중심, 애플리케이션 개발, 정밀도, 검색 튜닝 DSL은 애플리케이션이 데이터를 조회할 때 최적화되어 있습니다. 코드로 구현되어 시스템의 일부로 동작하거나, 매우 정교한 검색 로직이 필요할 때 사용합니다. * 상황 A: 검색 서비스 기능 구현 쇼핑몰 검색창, 자동 완성, 추천 시스템 등 최종 사용자에게 노출되는 기능을 개발할 때. Java, Python, Go 등의 클라이언트 라이브러리(SDK)는 객체 지향적인 JSON 구조(DSL)와 완벽하게 매핑됩니다. 코드로 쿼리를 조립하기에는 DSL이 훨씬 안정적입니다. * 상황 B: 정교한 검색 랭킹 튜닝 function_score, boosting, slop 등 검색 품질을 미세하게 조정하는 기능은 DSL만이 100% 지원합니다. PPL은 '분석'에 강하지만 '검색 랭킹' 제어력은 약합니다. * 상황 C: 초고성능 최적화가 필요한 고정 쿼리 수천만 건의 데이터를 0.1초 안에 조회해야 하는 API 백엔드. DSL은 필터 캐싱, 라우팅 제어 등 엔진 내부의 최적화 기능을 극한까지 활용할 수 있는 세밀한 옵션들을 제공합니다.\ 3) 정리 지금까지 OpenSearch의 PPL(Piped Processing Language)에 대해 깊이 있게 살펴보았습니다. 과거에는 OpenSearch 데이터를 분석하려면 'JSON 괄호와의 싸움'을 피할 수 없었습니다. 하지만 PPL의 등장으로 이제 SQL을 아는 개발자, 데이터 분석가, 심지어 비개발 직군까지도 데이터와 직접 대화할 수 있는 길이 열렸습니다. PPL이 가져온 변화는 명확합니다. - 직관성: 사고의 흐름대로 파이프(|)를 연결하여 로직을 구현합니다. - 생산성: 복잡한 집계 코드를 단 한 줄로 압축합니다. - 협업: 누구나 읽고 이해할 수 있는 코드로 팀 간 커뮤니케이션이 원활해집니다. 여러분의 데이터 인프라에 OpenSearch가 있다면, 오늘 당장 복잡한 JSON 대신 PPL을 입력해 보시길 권합니다. 단순히 쿼리 언어를 바꾸는 것을 넘어, 데이터 속에 숨겨진 인사이트를 발견하는 속도가 달라질 것입니다.
2026.01.07
다음 슬라이드 보기