반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
데브옵스(DevOps)에 대한 오해, 그리고 진실은?!
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
차정환
2024.02.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
IT 기술의 빠른 발전 못지않게, 각 세대별 특성도 빠르게 변화하고 있습니다.
특히 몇 해 전부터 'MZ 세대'와 관련한 이슈들이 크게 부각되었습니다. 유튜브나 TV 예능에서의 소재뿐 아니라, 사회 전체적으로도 모두가 관심을 가진 그야말로 '핫'한 주제가 되었죠.
MZ 세대와 관련한 다양한 도서들(출처: 교보문고)
MZ 세대에 대해 이해하고 함께 어울려보려고 노력해서 이제 조금 익숙해져가는 와중에... 이제 'MZ 세대' 보다 중요한 세대가 등장했습니다. 바로 '잘파세대'!
잘파세대는 Z세대와 알파 세대를 합친 말인데요, 소비자로서 그리고 직장의 구성원으로서 정말 중요한 부분을 차지하고 있고 영향력이 더 커질 잘파세대에 대해서 지금부터 자세히 알아보겠습니다.
│ 세대는 어떻게 구분되는가?!
본격적으로 이야기를 시작하기 전에 한 가지 분명히 해야 할 것이 있습니다. 지금부터 알아볼 특징들이 전체를 대표하는 경향이 있긴 하지만, 같은 세대 안에서도 개인차가 있으므로 모든 사람에게 동일하게 적용될 수는 없다는 것이죠.
하지만 이와 동시에 각 세대별 차이는 분명히 존재하기 때문에, 각 세대의 특징과 경향을 앎으로써 서로 더 가까워지기 위한 목적을 가지고 본격적으로 들여다보도록 하겠습니다.
조금씩의 차이는 있지만, 가장 나이가 많은 베이비부머 세대부터 알파 세대에 이르기까지 총 다섯 개의 분류로 세대를 구분하는 것이 일반적입니다. 세대별 구분 기준과 특징은 아래와 같이 정리할 수 있습니다.
베이비부머부터 X세대 초반(1975년생)까지는 그동안의 한국 사회의 가파른 성장을 이끌어온, 이른바 '기성세대'라고 볼 수 있습니다.
한편 그동안 'MZ세대(밀레니얼세대 + Z세대)'로 묶여왔던 밀레니얼 세대는 대세에서 멀어지고, 알파 세대가 새롭게 떠오르며 Z세대와 대세를 이루게 됐습니다.
밀레니얼 세대는 회사 내에서 '주니어급'에서 '중간관리자' 급으로 성장했죠. 따라서 위로는 베이비부머와 X세대를 모셔야 하고, 아래로는 잘파세대를 관리해야 함에 따른 밀레니얼 세대의 고충도 커지고 있습니다
(이 이슈는 나중에 따로 자세히 살펴보도록 하죠)
.
회사 내에서의 세대별 차이에서 오는 에피소드를 극대화한 MZ 오피스 (출처: 쿠팡플레이)
현재 대부분의 회사에서는 X세대 이상의 임원과, 차~부장급 팀장이 된 밀레니얼 세대, 그리고 주니어에서 갓 벗어나 과장급 실무자가 됐거나 주니어급인 Z세대가 어울려 있습니다. 그리고 이들이 알파 세대 고객을 만나 고생하기도 하고요.
그리고 가정에서는 은퇴한 베이비부머 세대를 둔 X세대 후반 ~ 밀레니얼 세대가 결혼해서 알파 세대를 낳은 후 고군분투하고 있고, Z세대는 그런 밀레니얼 시대를 보면서 결혼에 대해 심각하게 고민하는 모습을 흔치않게 볼 수 있습니다.
직장과 가정 모두에서 각 세대가 서로를 이해하며 오래오래 행복하게 살면 좋겠지만, 현실은 그렇지 않죠. 앞에도 언급했듯이 이제 주류가 된 잘파세대를 제대로 알고 함께 어울리기 위한 방법은 무엇일까요?
│ 소비자로서의 잘파세대, 그리고 대응 방안
본격적으로 잘파세대에 대해서 알아보겠습니다. 먼저 그들에게 우리 서비스와 제품을 잘 알리기 위해 '소비자로서의' 잘파세대의 특성을 살펴보죠. 세부적으로 Z세대와 알파 세대의 특성이 차이가 있기 때문에 나눠서 살펴보겠습니다.
Z세대(14세~28세)
Z세대는 소비자로서 세 가지 특성이 있습니다.
▪
디지털 네이티브:
인터넷, 스마트폰, 소셜미디어와 함께 성장한 이들은 소비에 있어서도 다양한 온라인 플랫폼을 적극 활용합니다. 특히 온라인 리뷰와 소셜미디어 추천을 매우 중요하게 여깁니다.
▪
가치 중심의 소비:
제품이나 브랜드가 대표하는 가치와 사회적 책임을 중시합니다. 지속 가능성, 윤리적 생산, 다양성 존중 등이 소비에 있어서 중요한 결정 요소가 됩니다.
▪
개인화된 경험 선호:
Z세대는 자신들의 취향과 관심사에 맞춤화된 제품이나 서비스를 선호합니다.
따라서 기업의 입장에선 우선 콘텐츠 마케팅/인플루언스 마케팅/자체 소셜미디어 운영 등을 통해서 Z세대와의 접점을 최대한 늘려야 합니다. 그리고 철저한 데이터 분석을 통해, 소비자의 취향과 선호를 파악하고 맞춤형 제품과 경험을 제공해야 하죠.
더불어서 기업의 사회적 책임과 지속 가능성 목표를 명확히 하고, 이를 적극적으로 알려야 합니다. 다만, 이때 주의해야 할 것은 '바르게 잘 하고 있는 척' 만 하는 것이 아니라, '실제로 바르게 말하고 행동'해야 합니다. 말과 행동이 다른 기업이나 서비스는 Z세대에게 바로 외면받을 수밖에 없기 때문이죠.
환경 보호를 직접 실천하며 꾸준한 사랑을 받고 있는 Patagonia
Z세대를 대상으로 성공적인 마케팅을 펼친 사례를 간단히 정리해 보면,
▪
나이키:
나이키는 AR(증강현실)을 이용한 신발 피팅 기술과, 소비자가 자신만의 디자인을 할 수 있는 커스터마이징 옵션을 제공하여 좋은 반응을 얻고 있습니다.
▪
Spotify:
Z세대의 음악 취향을 분석하여 개인화된 플레이리스트를 제공하는 것을 통해 많은 사용자를 유지하고 있습니다.
▪
Patagonia:
환경 보호를 중시하는 아웃도어 의류 브랜드로, 지속 가능한 제품 제조 방식과 환경 보호 캠페인을 펼치며 Z세대로부터 큰 지지를 받고 있습니다. 2023년에는 주식 전체를 환경보호 단체에 기부하며 큰 화제가 되기도 했죠.
▪
Beyond Meat:
식물로 만든 대체 육류 제품을 제공하여, 지속 가능한 소비와 동물 복지, 환경 보호에 앞장섬으로써 많은 사랑을 받고 있습니다.
식물로 만든 다양한 육류 제품으로 인기를 끌고 있는 Beyond Meat
Z세대를 위한 마케팅은 다음과 같은 한 마디로 정의할 수 있습니다.
'정말 좋은 목적을 가지고 만든 고객 맞춤형 제품과 서비스를, 소셜미디어를 통해 활발하게 알린다!'
알파 세대(~13세)
알파 세대는 Z세대와 비슷하지만 조금은 다른 특성을 가지고 있습니다.
▪
기술과의 완전한 통합:
알파 세대는 태어난 직후부터 스마트 기기와 AI와 함께 자랐습니다. 따라서 이들에게 최신 기술은 일상의 일부죠
(실제 미국에서 많은 아기들이 처음으로 발음한 것이 '엄마'가 아닌, '알렉사(구글의 AI 서비스)'여서 큰 화제가 되기도 했습니다)
.
▪
교육적 콘텐츠 소비:
아직 성장단계에 있고, 부모의 영향도 있기 때문에 교육적 가치가 있는 콘텐츠를 주로 많이 소비합니다.
▪
가족 구매 결정에 영향:
아직 어린 나이에도 불구하고, 알파 세대가 가족의 구매 결정에 영향을 미치는 경우가 꽤 많습니다.
디지털 기기와 매우 친숙한 알파 세대
알파 세대를 대상으로 성공적인 마케팅과 서비스를 제공하고 있는 사례를 살펴보면,
▪
Duolingo:
언어 학습 앱으로 게임 기능을 통해 교육적 가치와 재미를 동시에 제공하고 있습니다.
▪
Roblox:
아이들이 자신만의 게임을 만들고 다른 사람들과 공유할 수 있는 플랫폼으로, 창의력과 코딩 기술을 향상시킬 수 있어서 많은 사랑을 받고 있습니다.
▪
Amazone Echo Dot Kids Edition:
아이들을 위한 스마트 스피커로, 부모가 컨트롤할 수 있는 콘텐츠와 함께 다양한 교육 콘텐츠를 제공합니다.
▪
LEGO Super Mario:
레고와 닌텐도의 협업으로 만들어진 이 제품은, 게임과 실제 놀이의 결합을 통해 창의력과 문제 해결 능력을 발전시킬 수 있어서 좋은 반응을 얻고 있습니다.
알파 세대에게 큰 사랑을 받고 있는 Roblox (출처: The Irish Times)
결국 위에 살펴본 사례처럼 알파 세대에게 사랑받으려면, 교육적 가치가 있는 제품을 개발하고 가족 친화적 마케팅을 진행하면서 부모의 신뢰를 얻을 수 있는 안전한 디지털 환경을 제공해야 합니다
(유해 콘텐츠 방지, 개인정보 보호 등)
.
잘파세대인 소비자들에게 어떻게 다가갈지 조금 감이 잡히시나요? 함께 살펴본 내용은 극히 기본에 불과하지만, 이번 기회를 통해서 잘파세대 소비자들과 한 걸음이라도 가까워질 있게 되기를 바랍니다.
│ 직장인으로서의 잘파세대, 그리고 대응방안
자 이제, 소비자가 아닌 내 동료로서의 잘파세대를 알아보겠습니다. 단, 알파 세대는 아직 사회에 진출하기 전이 때문에 Z세대를 중심으로 하나씩 살펴보도록 하죠.
2020년대 초반부터 본격적으로 직장 생활을 시작한 Z세대는, 그들만의 독특한 특성과 가치관을 가지고 있습니다. 사실 'MZ 세대'에 특성으로 꼽히는 부분 중에 기성세대가 많이 새로워하고 놀란 특성들 대부분이 'Z세대'의 특성이라고 볼 수 있죠.
직장인으로서의 Z세대 특성은 다섯 가지로 정리할 수 있습니다.
Z세대가 즐겨 사용하는 업무 도구인 Slack
기술에 대한 높은 숙련도
디지털 네이티브인 Z세대는 다양한 기술과 플랫폼을 자연스럽게 사용합니다. Slack이나 Notion 등 효율적인 업무 도구와 소프트웨어를 활용하여 업무를 진행하는 것을 선호하죠
(반면에 전화나 대면 미팅을 꺼리는 경향도 있습니다)
.
자율성과 유연성에 대한 강한 욕구
자율적인 업무 환경과 일과 생활의 균형을 매우 중요시합니다. 유연한 근무시간과 재택근무 옵션을 높은 연봉보다 선호할 정도입니다.
다양성과 포용성에 대한 강조
Z세대는 다양성, 평등, 포용성에 대한 가치를 중요하게 여깁니다. 다양한 배경과 경험을 가진 사람들과의 협업을 중시하며, 모두가 존중받는 직장 문화를 원합니다.
목적과 가치에 대한 추구
단순히 급여를 받는 것에 그치지 않고, 자신이 하는 일이 사회적으로 선하고 긍정적인 영향을 미치는지를 중요하게 여깁니다. 따라서 회사를 선택할 때도 회사의 사회적 책임과 가치에 공감할 수 있는지를 진지하게 고민합니다.
피드백과 성장 기회에 대한 욕구
지속적인 피드백과 자신의 역량을 개발할 수 있는 기회를 중요하게 생각합니다. 특히 본인의 업무 성과에 대한 구체적이고 명확한 피드백을 원하죠. 불투명한 평가절차 및 결과로 인한 Z세대의 퇴사가 늘고 있는 이유입니다.
따라서 Z세대를 회사의 구성원으로 잘 적응시키기 위해서는, 유연한 근무 환경을 제공하고 개인의 성장과 개발을 지원하는 프로그램을 갖추는 것이 중요합니다.
이와 동시에 회사의 사회적 책임에 대해서 어필하고, 다양성과 포용성을 증진할 수 있는 실질적인 실천도 뒷받침되어야 하죠. 그리고 무엇보다 이들의 성과를 정확히 평가하고, 구체적이고, 투명하게 피드백을 줄 수 있는 시스템도 갖춰야 합니다.
Z세대가 선호하는 직장으로 꼽히는 곳들은 대부분 구글과 같이 유연한 근무 환경/자율성 존중/개인의 성장과 개발에 대한 강력한 지원을 하거나, Salesforce나 에어비앤비처럼 사회적 가치와 미션에 대해서 강조하고 직원들과 투명한 커뮤니케이션을 진행하고 있습니다.
신입/주니어급이던 Z세대가 실무의 핵심으로 자리 잡고 있는 가운데, 본인의 이상과 실제에 거리감에 회의를 느낀 Z세대의 이직이나 퇴사도 늘고 있습니다.
또한 퇴사는 하지 않아도 일을 잘하려는 의지 없이 최소한의 업무만 하는 이른바 '조용한 퇴사'도 늘고 있는데요. 조용한 퇴사로 인한 기업의 손실이 약 2,500조에 이른다는 갤럽의 분석도 있습니다.
따라서 모든 기업이 Z세대의 마음을 사로잡고, 그들의 업무 효율을 높이기 위한 빠른 노력이 꼭 필요합니다. 이제 곧 Z세대가 기업 실무진행의 핵심으로 자리 잡을 시기가 오기 때문이죠.
│ 글을 마치며
"요즘 젊은이들은 버릇이 없다."
기원전 1700년에 만들어진 수메르 시대 점토판 문자에 이렇게 쓰여있다고 하죠. 기존 세대와 새로운 세대의 갈등은 오래전부터 존재해왔습니다.
하지만 기술의 발달과 넘치는 정보로 인해서 상황이 옛날과 많이 바뀌었습니다. 앞서 살펴본 대로 잘파세대는 소비자로서도 중요한 위치에 오르고 있고, 회사 내에서도 잘파세대의 역할이 점점 더 중요해지고 있기 때문입니다.
특히 기업을 운영할 때 '기성세대의 노하우를 전수하는 것'보다, '신기술을 빠르게 터득하고 활용하는 것'이 더 중요해졌기 때문에 새로운 세대와 효과적으로 함께 하기 위한 노력이 빠르게 필요합니다.
점심회식을 통해 세대간 어울리기 위한 노력을 이어가고 있는 브레인즈컴퍼니
어려워 보이고 갈 길이 멀어 보일 수도 있지만, 오늘부터 잘파세대를 이해하기 위한 하나씩 실천해 보는 건 어떨까요?
(그렇다고 잘파세대 후배 불러서 저녁회식 같은거 하시면 안 됩니다...)
#잘파세대
#Z세대
#알파세대
#MZ세대
#브레인즈컴퍼니
차정환
온/오프라인 마케팅 브랜딩, 그리고 홍보를 총괄하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
오늘날 대규모 인프라 환경에서 발생하는 방대한 데이터를 관리하기 위해 로그 모니터링과 로그분석은 필수적인 요소가 되었습니다. OpenSearch(및 Elasticsearch)는 이 분야의 사실상 표준으로 자리 잡았으나, 이를 활용하는 엔지니어와 분석가들은 강력한 기능의 이면에 있는 ‘Query DSL’이라는 높은 진입 장벽을 마주하곤 합니다. JSON 형식을 기반으로 하는 DSL은 검색 조건을 매우 정밀하게 정의할 수 있다는 장점이 있습니다. 하지만 쿼리가 복잡해질수록 로직이 깊게 중첩되어 가독성이 떨어지고 생산성이 저하되는 구조적 문제를 안고 있습니다. 특히 1분 1초가 급한 장애 상황이나 보안 침해 사고를 분석해야 하는 SIEM(보안 정보 및 이벤트 관리) 환경에서, 수십 줄의 JSON 괄호를 맞추는 작업은 민첩한 대응을 방해하는 실질적인 걸림돌이 됩니다. 이러한 문제를 해결하기 위해 등장한 것이 바로 PPL(Piped Processing Language)입니다. PPL이 제안하는 새로운 분석 방식을 살펴보기 전, 먼저 우리가 기존 DSL 환경에서 겪어온 실제적인 어려움들을 통해 왜 방식의 변화가 필요한지 짚어보겠습니다. 1. 데이터 탐색의 어려움 1.1. OpenSearch DSL OpenSearch(및 Elasticsearch)는 검색 엔진 시장의 사실상 표준으로 자리 잡았지만, 데이터 분석가나 엔지니어들에게는 한 가지 큰 진입 장벽이 존재했습니다. 바로 Query DSL(Domain Specific Language)입니다. DSL은 JSON(JavaScript Object Notation) 형식을 기반으로 하며, 검색 쿼리의 구조를 매우 정밀하게 정의할 수 있다는 강력한 장점이 있습니다. 하지만 이는 동시에 인간의 직관과는 거리가 먼 방식이기도 합니다. DSL은 쿼리가 복잡해질수록 JSON 객체가 깊게 중첩되는 특성이 있기 때문입니다. 예를 들어 단순한 GROUP BY 집계를 수행하려 해도 aggs안에 terms, 그 안에 다시 aggs를 정의해야 하는 피라미드 구조가 형성됩니다. 일반적으로 데이터를 탐색하는 과정은 "A를 찾고, B를 제외한 뒤, C로 묶어서 계산한다"라는 선형적인 사고를 따릅니다. 하지만 DSL은 이 모든 조건을 하나의 거대한 JSON 객체로 구조화해야 하므로, 작성과 수정 시 높은 집중력을 요합니다. 또한 로그를 분석하거나 장애 원인을 파악하는 긴급한 상황에서, 수십 줄의 JSON 괄호 짝들은 가독성과 생산성을 저하시키는 요인이 됩니다. <예시 1.1: 지난 1시간 동안 500 에러가 발생한 상위 5개 IP 추출하기 위한 DSL문> 1.2. PPL(Piped Processing Language) PPL은 이러한 구조적 복잡성을 해결하기 위해 등장했습니다. 이름에서 알 수 있듯이, 파이프(Pipe, |)를 통해 데이터를 순차적으로 처리하는 언어입니다. PPL이 가져온 변화는 단순히 문법의 형태를 바꾼 수준에 그치지 않습니다. 데이터에 접근하는 패러다임 자체를 선언적 구조(JSON)에서 절차적 흐름(Pipeline)으로 전환시킨 것입니다. 이는 Unix와 Linux에서 익숙하게 사용되는 명령어 파이프라인 철학을 데이터 검색 엔진에 이식한 결과이기도 합니다. 이러한 방식의 변화 덕분에 사용자는 더 이상 복잡한 JSON의 계층 구조를 설계할 필요가 없습니다. 대신 "데이터를 가져오고, 필터링한 뒤, 통계를 낸다"는 인간의 자연스러운 사고 흐름에 맞춰 질의를 작성할 수 있게 되었습니다. 이는 결과적으로 쿼리 작성 시간을 단축시키고, 분석가의 의도를 더욱 명확하게 코드에 투영할 수 있게 해줍니다. <예시 1.2: 예시 1.2와 동일한 로직을 PPL로 작성한 경우> 2. PPL의 핵심 특징 및 장점 PPL을 도입해야 하는 이유는 단순히 쓰기 편해서가 아닙니다. 이는 데이터 분석의 접근성(Accessibility), 가독성(Readability), 유연성(Flexibility) 측면에서 근본적인 이점을 제공하기 때문입니다. 2.1. SQL-like Syntax 데이터 업계에서 SQL은 가장 보편적인 언어입니다. PPL은 SQL의 문법적 특성을 차용하여 접근성을 높였습니다. SELECT, WHERE, LIKE 등 익숙한 키워드를 그대로 사용하므로, 새로운 도구 도입에 따른 저항감을 최소화합니다. 2.2. Pipe ($|$) PPL의 가장 강력한 무기는 | (파이프) 연산자입니다. 이는 쿼리를 논리적 단계로 분해합니다. 1단계: 전체 데이터 가져오기 (source=logs) 2단계: 필요한 부분만 남기기 (| where status=500) 3단계: 불필요한 필드 버리기 (| fields timestamp, message) 이처럼 하나의 문제를 단계별로 쪼개며 순차적으로 해결할 수 있습니다. 이러한 방식은 디버깅의 용이성도 증가시킵니다. DSL은 쿼리가 실패하면 전체 JSON 구조를 다시 살펴봐야 하지만, PPL은 파이프를 하나씩 끊어가며 어느 단계에서 데이터가 의도와 다르게 변형되었는지 즉시 확인할 수 있습니다. 2.3. Aggregation의 추상화 OpenSearch의 집계(Aggregation) 기능은 강력하지만 DSL 작성이 매우 까다롭습니다. PPL은 이를 stats 명령어로 추상화했습니다. 기존 DSL 방식에서 집계를 하려면 버킷(Buckets)과 메트릭(Metrics)의 개념을 이해하고, 이를 JSON의 계층 구조로 쌓아 올려야 했습니다. 하지만 PPL은 이 복잡한 과정을 우리가 흔히 쓰는 SQL 스타일로 탈바꿈시켰습니다. 간단한 시나리오인 “카테고리별 평균 가격 구하기”를 DSL로 작성하면 aggs 안에 그룹핑을 위한 terms를 정의하고, 그 안에 다시 계산을 위한 aggs를 중첩해야 합니다. 평균을 구한다라는 쿼리의 의도보다 괄호와 같은 문법적 구조에 더 신경 써야 합니다. 그룹핑 조건이 늘어날수록 JSON은 기하급수적으로 깊어집니다. 반면 동일한 시나리오를 PPL로 작성하면 stats 이라는 명령어로 간단하게 표현할 수 있습니다. stats: "집계를 시작하겠다"는 선언입니다. avg(price): "무엇을 계산할지" 명시합니다. (Metric) by category: "무엇을 기준으로 묶을지" 명시합니다. (Bucket) 단 한 줄의 코드로 DSL의 복잡한 로직을 완벽하게 대체할 수 있습니다. 2.4. 동적 필드 생성 데이터 분석을 하다 보면, 인덱스에 저장된 원본 데이터(Raw Data)만으로는 부족할 때가 많습니다. - 용량이 bytes 단위로 저장되어 있어 보기 불편한 경우 - 파일 경로와 파일 이름이 하나의 필드에 있어 각각 분리해야 하는 경우 - 보낸 용량, 받은 용량만 있고 총 용량이 없는 경우 이를 해결하기 위해 데이터를 재색인(Reindexing)하는 것은 너무 복잡한 과정입니다. 하지만 PPL은 eval 명령어 하나로 쿼리 실행 시점에 필드를 즉석에서 생성합니다. 바이트 단위를 메가바이트로 변환하여 새로운 필드 size_mb를 만드는 로직은 eval 명령어와 간단한 연산자를 이용하여 작성할 수 있습니다. 원본 데이터에는 size_mb라는 필드가 존재하지 않습니다. 하지만 PPL이 실행되는 순간 계산되어, 마치 원래 있던 필드처럼 where 절에서 필터링 조건으로 사용하거나 fields로 출력할 수 있습니다. PPL의 eval은 데이터 저장 구조(Schema)가 분석의 한계가 되지 않도록, 분석가에게 데이터를 재정의할 수 있는 강력한 권한을 부여하는 기능입니다. 3. PPL 문법 해부 앞서 PPL이 데이터 분석에 제공하는 근본적인 이점들을 살펴보았습니다. 하지만 이러한 장점들을 실무에 온전히 녹여내기 위해서는 PPL이 데이터를 처리하는 방식, 즉 문법의 구조를 정확히 이해하는 과정이 필요합니다. PPL의 문법은 단순한 규칙의 나열이 아니라, 데이터의 흐름을 제어하는 그 자체입니다. 각 명령어는 이전 단계에서 넘어온 데이터를 가공하여 다음 단계로 넘겨주는 '필터' 역할을 수행합니다. 마치 공장의 컨베이어 벨트 위에서 원재료가 각 공정을 거쳐 완성품이 되는 것과 같은 원리입니다. 그럼 지금부터 데이터 분석 현장에서 가장 빈번하게 사용되는 6가지 핵심 명령어를 통해 PPL의 구조를 깊이 있게 살펴보겠습니다. 3.1. source 모든 PPL 쿼리의 시작점입니다. SQL의 FROM 절에 해당하지만, PPL에서는 search source=... 형태로 명시합니다. 단일 인덱스뿐만 아니라 와일드카드(*)를 사용하여 여러 인덱스를 동시에 조회할 수 있습니다. search source=logs-* : 'logs-'로 시작하는 모든 인덱스 조회. 3.2. where 분석에 불필요한 데이터를 걸러내는 단계입니다. SQL의 WHERE 절과 동일합니다. where는 파이프라인의 가장 앞단에 위치시키는 것이 성능상 유리합니다. 처리해야 할 데이터의 총량을 줄여주기 때문입니다. where는 AND, OR, NOT 논리 연산자와 in, like 등의 비교 연산자를 모두 지원합니다. 3.3. eval 원본 데이터에는 없지만 분석 시점에 필요한 새로운 데이터를 만들어냅니다. 기존 필드 값을 이용해 계산을 하거나 문자열을 조합하여 새로운 필드를 정의합니다. 3.4. stats SQL의 GROUP BY와 집계 함수를 합친 개념입니다. 문법: stats <function>(<field>) by <grouping_field> 집계함수: count, sum, avg, min, max와 같은 통계 분석에 필요한 함수를 제공합니다. 3.5. fields 최종 사용자에게 보여줄 데이터를 다듬는 과정입니다. SELECT 절과 유사합니다. 수백 개의 필드 중 분석에 필요한 핵심 필드만 남깁니다 (+로 포함, -로 제외 가능). rename: 기술적인 필드명(예: req_ts_ms)을 비즈니스 친화적인 이름(예: Response Time)으로 변경하여 가독성을 높입니다. 3.6. sort & head sort: 데이터의 정렬 순서를 정합니다. - 기호를 붙이면 내림차순(DESC)이 됩니다. (sort -count) head: SQL의 LIMIT와 같습니다. 상위 N개의 결과만 잘라냅니다. 대량의 데이터 분석 시 결과를 끊어서 확인하는 데 필수적입니다. 4. 실전 예제 지금까지 PPL의 기본 개념과 주요 명령어들을 살펴보았습니다. 하지만 도구의 진정한 가치는 이론적인 문법을 아는 것에 그치지 않고, 이를 실제 복잡한 데이터 환경에 어떻게 적용하느냐에 있습니다. 이제 우리가 현업에서 흔히 마주할 수 있는 구체적인 시나리오들을 통해, PPL이 실무적인 문제들을 얼마나 직관적이고 효율적으로 해결하는지 단계별로 알아보겠습니다. 4.1. Brute Force 공격 탐지 상황: 과도한 로그인 실패(401 Error) IP 식별 1) search source=access_logs: 엑세스 로그 전체를 가져옵니다. 2) where status = 401: 전체 로그 중 로그인 실패 로그만 남깁니다. 3) stats count() as fail_count by client_ip: IP 주소별로 실패 횟수를 집계합니다. 이제 데이터는 개별 로그가 아니라 'IP별 요약 정보'가 됩니다. 4) where fail_count > 50: 50회 이상 실패한 의심 IP만 필터링합니다. (집계 후 필터링 - SQL의 HAVING 절과 유사) 5) sort -fail_count: 가장 공격 빈도가 높은 IP를 최상단에 노출합니다. 4.2. 카테고리별 매출 분석 상황: 상품 카테고리별 매출 현황과 평균 단가 확인 1) eval revenue = price * quantity: price와 quantity 필드를 곱하여, 원본 데이터에 없던 revenue(매출액) 필드를 실시간으로 계산해냅니다. 2) stats sum(revenue) as total_sales, avg(revenue) as avg_order_value by category: 카테고리 기준으로 총 매출(sum)과 평균 주문액(avg)을 동시에 계산합니다. 3) head 10: 상위 10개 카테고리만 추출하여 리포트용 데이터를 완성합니다. 4.3. 시간대별 트래픽 추이 시각화 상황: 지난 24시간 동안 웹 서버의 트래픽 변화 1) span(timestamp, 10m): 연속적인 시간 데이터를 10분 단위로 자릅니다. 2) stats count() as request_count by ...: 잘라낸 10분 단위별로 요청 수(count)를 셉니다. 결과: 이 쿼리의 결과는 그대로 라인 차트(Line Chart)나 바 차트(Bar Chart)로 시각화하기 완벽한 형태(X축: 시간, Y축: 횟수)가 됩니다. 5. PPL 성능 최적화와 고려사항 PPL은 사용자가 직관적으로 쿼리를 작성할 수 있게 돕지만, 그 이면에서는 방대한 데이터를 처리하는 무거운 작업이 수행됩니다. 도구의 편리함이 시스템의 부하로 이어지지 않도록, 쿼리 효율성을 고려하는 분석 습관을 갖추는 것이 중요합니다 5.1. 성능 최적화 방안 PPL 쿼리는 파이프라인 구조이기 때문에, 앞단에서 데이터의 크기를 줄일수록 전체 실행 속도가 기하급수적으로 빨라집니다. 1) where는 search 바로 뒤에 오는 것이 좋습니다. 데이터를 집계(stats)하거나 정렬(sort)한 뒤에 필터링하는 것은 낭비입니다. 불필요한 데이터를 메모리에 올리기 전에 where 절로 과감하게 잘라내야 합니다. 2) 필요한 필드만 명시하는 것이 좋습니다. OpenSearch 문서는 수십, 수백 개의 필드를 가질 수 있습니다. fields 명령어를 사용하여 분석에 꼭 필요한 필드만 남기면 네트워크 전송량과 메모리 사용량을 획기적으로 줄일 수 있습니다. 5.2. PPL vs DSL 언제 무엇을 써야 할까? PPL이 등장했다고 해서 기존의 DSL(Domain Specific Language)이 사라지는 것은 아닙니다. 두 언어는 태생적 목적이 다릅니다. 이 둘을 상호 보완적인 관계로 이해하고 적재적소에 사용하는 것이 좋습니다. 1) PPL을 써야 하는 경우 - 사람 중심, 탐색, Ad-hoc 분석, 운영/보안 PPL은 사람이 데이터를 봐야 하는 상황에 최적화되어 있습니다. 사고의 흐름이 끊기지 않고 빠르게 질문을 던지고 답을 얻어야 하는 상황입니다. * 상황 A: 장애 발생 시 긴급 원인 분석 "지금 500 에러가 급증하는데, 특정 API에서만 발생하는 건가?" 긴급 상황에서 복잡한 JSON 괄호를 맞출 시간은 없습니다. PPL로 빠르게 필터링(where)하고 집계(stats)하여 원인을 좁혀나가야 합니다. * 상황 B: 보안 위협 헌팅 "지난 1주일간 새벽 시간에만 접속한 관리자 계정이 있는가?" 데이터를 이리저리 돌려보고, 조건을 바꿔가며 숨겨진 패턴을 찾아내는 '탐색적 분석'에는 수정이 용이한 PPL이 압도적으로 유리합니다. * 상황 C: 비개발 직군의 데이터 접근 기획자(PM), 마케터, 데이터 분석가가 직접 데이터를 추출해야 할 때. SQL에 익숙한 이들에게 JSON DSL을 학습시키는 것은 비효율적입니다. PPL은 이들에게 데이터 접근 권한을 열어주는 열쇠가 됩니다. 2) DSL을 써야 하는 경우 키워드: 기계 중심, 애플리케이션 개발, 정밀도, 검색 튜닝 DSL은 애플리케이션이 데이터를 조회할 때 최적화되어 있습니다. 코드로 구현되어 시스템의 일부로 동작하거나, 매우 정교한 검색 로직이 필요할 때 사용합니다. * 상황 A: 검색 서비스 기능 구현 쇼핑몰 검색창, 자동 완성, 추천 시스템 등 최종 사용자에게 노출되는 기능을 개발할 때. Java, Python, Go 등의 클라이언트 라이브러리(SDK)는 객체 지향적인 JSON 구조(DSL)와 완벽하게 매핑됩니다. 코드로 쿼리를 조립하기에는 DSL이 훨씬 안정적입니다. * 상황 B: 정교한 검색 랭킹 튜닝 function_score, boosting, slop 등 검색 품질을 미세하게 조정하는 기능은 DSL만이 100% 지원합니다. PPL은 '분석'에 강하지만 '검색 랭킹' 제어력은 약합니다. * 상황 C: 초고성능 최적화가 필요한 고정 쿼리 수천만 건의 데이터를 0.1초 안에 조회해야 하는 API 백엔드. DSL은 필터 캐싱, 라우팅 제어 등 엔진 내부의 최적화 기능을 극한까지 활용할 수 있는 세밀한 옵션들을 제공합니다.\ 3) 정리 지금까지 OpenSearch의 PPL(Piped Processing Language)에 대해 깊이 있게 살펴보았습니다. 과거에는 OpenSearch 데이터를 분석하려면 'JSON 괄호와의 싸움'을 피할 수 없었습니다. 하지만 PPL의 등장으로 이제 SQL을 아는 개발자, 데이터 분석가, 심지어 비개발 직군까지도 데이터와 직접 대화할 수 있는 길이 열렸습니다. PPL이 가져온 변화는 명확합니다. - 직관성: 사고의 흐름대로 파이프(|)를 연결하여 로직을 구현합니다. - 생산성: 복잡한 집계 코드를 단 한 줄로 압축합니다. - 협업: 누구나 읽고 이해할 수 있는 코드로 팀 간 커뮤니케이션이 원활해집니다. 여러분의 데이터 인프라에 OpenSearch가 있다면, 오늘 당장 복잡한 JSON 대신 PPL을 입력해 보시길 권합니다. 단순히 쿼리 언어를 바꾸는 것을 넘어, 데이터 속에 숨겨진 인사이트를 발견하는 속도가 달라질 것입니다.
2026.01.07
다음 슬라이드 보기