반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
Filebeat vs Logstash, 대규모 로그 수집 환경에서 더 적합한 선택은?!
Filebeat vs Logstash, 대규모 로그 수집 환경에서 더 적합한 선택은?!
대규모 시스템에서 로그는 단순한 기록이 아니라, 장애 진단과 보안 분석, 운영 자동화를 위한 핵심 데이터 소스입니다. 하지만 로그 수집량이 기하급수적으로 늘어나면 기존 Logstash 기반 아키텍처는 JVM 오버헤드와 자원 점유 문제로 병목이 발생하기 쉽습니다. 이런 한계를 보완하기 위해 주목받는 것이 Filebeat입니다. 경량 Go 기반으로 설계된 Filebeat은 CPU와 메모리 부담을 최소화하고, 수집과 전송에 집중함으로써 분산 환경에서도 안정적으로 동작할 수 있습니다. 이번 글에서는 왜 Logstash 대신 Filebeat을 선택하게 되었는지, 그리고 이를 통해 어떤 운영상의 안정성과 효율성을 확보할 수 있었는지 살펴보겠습니다. 1. 왜 Logstash 대신 Filebeat를 사용하게 되었나? 통합로그관리 시스템 개발 초창기 파일 로그 수집 에이전트로 Logstash를 사용했습니다. 그러나 고객사의 폭발적인 로그 증가와 대규모 환경 요구사항에 효과적으로 대응하고 시스템의 안정성을 위해, 로그 수집 에이전트를 Filebeat로 전환하게 되었습니다. 왜? Logstash 기반 아키텍처를 바꾸었는지, 그리고 Filebeat 도입이 가져온 기술적 이점과 주요 설정은 무엇인지 자세히 살펴보겠습니다. * 수집 에이전트 교체, 무엇이 문제였고 무엇을 얻었나? 수집해야 할 로그 소스(서버, 네트워크 장비, 보안 솔루션 등)가 폭발적으로 증가하면서, 기존의 Logstash 기반 수집 아키텍처는 다음과 같은 근본적인 한계에 직면했습니다. 안정적인 SIEM 운영을 위해서는 수집 에이전트의 경량화, 안정성, 리소스 효율성 확보가 최우선 과제였으며, 그 해답으로 Filebeat를 선택하게 되었습니다. Filebeat는 Logstash의 경량화된 버전으로, 에이전트 수집 역할을 담당합니다. 즉, 로그가 생성되는 서버에 설치되어 로그 파일을 읽고 바로 OpenSearch(이전의 Elasticsearch) 또는 Kafka와 같은 목적지로 전송하는 역할을 합니다. Filebeat는 Go 언어로 개발되어 메모리 사용량이 극히 적고, CPU 부하도 거의 발생시키지 않습니다. Filebeat로 변경은 단순히 도구를 바꾼 것이 아닌, 로그 파이프라인의 효율성과 안정성을 극대화하는 전략적 선택이었습니다. 다음으로는 Logstash에서 Filebeat로 전환함으로써 얻은 주요 장점과 기술적인 이점, 그리고 Filebeat의 주요 설정에 대해 살펴보겠습니다. 2.Filebeat 전환을 통한 구체적인 이점은?! Filebeat로의 전환은 성능 개선을 넘어, 파일 수집 아키텍처를 현대적인 분산 처리 구조로 진화시켜 안정성, 유연성, 개발 효율이라는 세 가지 핵심 이점을 확보했습니다. (How Filebeat works) [1] 데이터 흐름 제어 및 안정성 Filebeat의 가장 중요한 기능 중 하나는 백프레셔(Backpressure) 메커니즘입니다. Filebeat는 데이터를 전송하는 중앙 시스템(Kafka 또는 OpenSearch Ingest Node)에 부하가 걸려 처리 속도가 느려질 경우, 스스로 로그 전송 속도를 늦춥니다. 이 지능적인 흐름 제어 덕분에 중앙 시스템의 과부하를 막고, 데이터 파이프라인이 붕괴되는 것을 방지하여 안정적인 로그 흐름을 보장합니다. [2] 유연한 운영 환경 Filebeat는 탁월한 운영 유연성을 제공합니다. 특히 filebeat.config.inputs 기능을 활용한 동적 설정 관리는 Filebeat 재시작 없이 새로운 로그 소스를 실시간으로 추가/변경할 수 있게 해 운영의 유연성을 극대화합니다. Zenius SIEM 역시 설정 편집 기능을 제공하여 이러한 운영 유연성을 확보하고 있습니다. [3] 메타데이터 사전 분류와 ECS 정규화 fields.* 기능을 이용해 수집 단계에서 로그 유형(mtype) 등을 태깅하여 중앙 시스템의 ECS(Elastic Common Schema) 기반 정규화를 위한 '분류 키' 역할을 합니다. ECS를 통해 모든 로그가 표준화되므로, 상관관계 분석 및 일관된 검색/시각화 효율이 극대화됩니다. *여기서 ECS란?* ECS는 보안 이벤트, 로그 등 모든 데이터를 공통된 필드 이름으로 정의하는 표준 스키마입니다. 서로 다른 로그 소스(예: Apache, Windows 이벤트)에서 수집된 데이터라도 ECS를 적용하면 동일한 표준 필드(source.ip, destination.port 등)를 갖게 되어 검색과 분석이 용이해집니다. 예시) cpu_pct 라는 ECS가 있다면 “cpu > 60” 검색 시 해당 ESC가 적용된 모든 로그를 찾아 로그의 수집,출처 및 내용을보여줄 수 있음 *SIEM에서의 이점 극대화* - 일관성 확보: 모든 로그가 ECS를 기반으로 표준화되므로, 분석가들은 매번 다른 필드 이름을 외울 필요 없이 표준화된 필드로 일관성 있게 검색 및 대시보드를 구축할 수 있습니다. - 분석 효율성 확보: 모든 로그가 공통 스키마를 따르기 때문에 상관관계 분석(Correlation)을 효율적으로 수행하여 보안 위협을 신속하고 정확하게 식별하는 데 큰 도움이 됩니다. 결론적으로, Filebeat의 fields.* 기능은 단순 태깅을 넘어, 데이터를 중앙에서 ECS로 효율적이고 정확하게 정규화하기 위한 SIEM 아키텍처의 필수적인 개발 포인트입니다. 다음 내용에서는 Filebeat의 구체적인 작동 방식을 정의하는 주요 설정들을 살펴보겠습니다. 3.Filebeat 주요 설정 Filebeat를 사용하기 위해서는 filebeat.yml 파일에 주요 설정을 정의해야 합니다. 이 파일에는 어떤 로그 파일을 모니터링할지, 어떤 포맷으로 데이터를 전송할지, 그리고 어떤 목적지로 보낼지에 대한 정보가 포함됩니다. [1] Filebeat 핵심 환경 설정 (Configuration) 로그 파일 수집 자체를 제외한 Filebeat의 실행 환경, 관리 유연성, 데이터 전송 메커니즘, 그리고 운영 안정성을 정의합니다. 이러한 설정은 SIEM 아키텍처의 견고함을 결정하는 핵심 요소입니다. (설정은 환경에 따라 변경 가능하며 아래는 예시로 설정한 부분을 설명 합니다.) [2] filebeat.inputs - 로그 파일 모니터링 정의 (수집) Filebeat가 어떤 로그 파일을 읽고 수집할지 정의하며, 수집된 로그에 메타데이터를 부여하는 핵심 부분입니다. 가장 일반적인 설정은 paths를 사용하여 로그 파일의 경로를 지정하는 것입니다. 위 설정은 /var/log/secure/ 파일을 읽도록 Filebeat에 지시합니다. fields를 사용하여 로그에 메타데이터를 추가할 수 있습니다. [3] Processors - 경량 데이터 가공 로그를 목적지로 전송하기 직전에 간단한 가공을 수행하여 중앙 시스템의 부하를 줄이고 필수 메타데이터를 추가할 수 있습니다. (메타데이터 추가 예시) (Drop 설정 예시, (ex)Linux audit log 수집 시 특정 경로의 로그 제외 설정) [4] Output - 데이터 전송 목적지 정의 로그 수집 및 가공을 마친 데이터를 전송할 최종 목적지를 정의합니다. 아래 예시에서는 Kafka를 목적지로 사용하여 대규모 로그 처리 및 부하 분산의 이점을 확보합니다. Filebeat의 filebeat.yml에 있는 다양한 설정 옵션들은 로그 수집의 안정성과 효율성을 결정하는 핵심적인 요소입니다. 이러한 주요 설정 기능들을 적절히 활용한다면, 대규모 환경에서도 안정적이고 효율적인 수집 체계를 성공적으로 구축할 수 있습니다. 이제 마지막으로, Zenius SIEM에서 이러한 Filebeat 설정 기능들이 실제로 어떻게 활용되었는지 살펴보겠습니다. 4. Zenius SIEM의 Filebeat 활용 (중앙 집중식 Filebeat 관리) Zenius SIEM 솔루션은 Filebeat의 기술적 장점을 실제 운영 환경에서 활용 할 수 있도록 YML 설정 편집 및 중앙 집중식 관리 기능을 제공합니다. 이는 대규모 에이전트 환경의 운영 부담을 획기적으로 줄여주며, 고객이 Filebeat의 세밀한 기술적 기능을 직접 제어하고 커스터마이징할 수 있게 합니다. - GUI 기반 YML 편집기 및 전용 설정 기능 Zenius SIEM은 운영자가 Filebeat의 설정을 세밀하게 제어하고 편리하게 관리할 수 있도록 GUI 기반 YML 편집기를 제공합니다. 운영자는 이 환경에서 Filebeat의 모든 YML 설정 (Inputs, Processors, Output 등)을 직접 수정하고 커스터마이징 할 수 있습니다. 특히 로그 수집 안정성에 필수적인 핵심 기능, 예를 들어, 멀티라인 패턴, negate, match, tail files, 동시 수집 파일 수, include lines, exclude lines은 별도의 전용 인터페이스를 통해 더욱 편리하게 설정할 수 있도록 지원하여, 복잡한 설정도 쉽게 관리할 수 있습니다. - 중앙 집중식 설정 수백 대의 서버에 설치된 Filebeat 에이전트의 설정을 관리하고 설정과 동시에 Filebeat의 동적 설정 기능 (filebeat.config.inputs 등)을 활용하여 에이전트 재시작 없이 즉시 변경 사항을 반영한다는 것입니다. 이는 서비스 중단 없이 운영 환경을 유지할 수 있게 해줍니다. - 에이전트 제어 및 상태 모니터링 분산된 로그 수집 환경을 통합적으로 관리하기 위해, Zenius SIEM은 에이전트 제어 및 상태 모니터링 기능을 제공합니다. 각 에이전트의 실행 상태 확인, 원격 재시작, 버전 관리 등의 제어 기능을 단일 시스템에서 제공하여, 운영자가 분산된 에이전트 환경을 쉽게 관리하고 장애 발생 시 신속하게 대응할 수 있도록 돕습니다. (수집 상태 모니터링 기능) (에이전트 관리 기능) 5. 마치며 지금까지 Logstash에서 Filebeat로의 전환 배경과 그 이유, Filebeat의 주요 기능과 설정, 그리고 Zenius SIEM 환경에서의 실제 활용 사례를 중심으로 살펴보았습니다. 이번 전환은 단순한 에이전트 교체를 넘어, 대규모 환경의 요구사항에 보다 적합한 아키텍처를 구축하기 위한 전략적인 선택이었습니다. Filebeat 도입을 통해 Zenius SIEM은 다음과 같은 측면에서 운영 기반을 한층 강화할 수 있었습니다: -경량화 및 안정성 향상 Go 언어 기반의 경량 구조로 서버 자원 사용을 최소화하고, 백프레셔(Backpressure) 및 레지스트리(Registry) 기능을 통해 로그 유실 없는 안정적인 수집 환경을 구현했습니다. -운영 유연성과 분석 효율성 확보 동적 설정 관리 기능을 통해 다양한 환경에서 유연하게 운영할 수 있었으며, ECS 필드 구조(fields.*)를 적극 활용해 로그 분석과 데이터 정규화를 보다 체계적으로 수행할 수 있게 되었습니다. Zenius SIEM은 이러한 Filebeat를 중앙 집중식 관리 시스템과 통합하여, 고객 환경에 최적화된 안정적이고 효율적인 로그 수집 서비스를 제공하고 있습니다. 지금까지 Logstash에서 Filebeat로의 전환을 통해 어떤 기술적 변화가 있었고, 그것이 실제 운영 환경에 어떻게 적용되었는지를 정리해 보았습니다. 변화하는 IT 환경 속에서 로그 수집 방식 또한 지속적으로 진화하고 있으며, 앞으로도 이에 대한 다양한 시도와 고민은 계속될 것입니다.
2025.10.21
다음 슬라이드 보기