반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
최신이야기
검색
기술이야기
효과적인 GPU 모니터링 및 관리를 위한 제니우스의 3가지 강점
기술이야기
효과적인 GPU 모니터링 및 관리를 위한 제니우스의 3가지 강점
AI가 이제 단순한 생성을 넘어, 스스로 판단하고 행동하는 'AI 에이전트'의 시대로 진입했습니다. 이에 따라서 AI 연산의 심장인 GPU 시장이 빠르게 성장하고 있습니다. 글로벌 시장조사기관 Mordor Intelligence가 발표한 보고서에 따르면, 글로벌 GPU 시장은 AI 데이터센터 수요 급증에 힘입어 연평균 25.6% 성장하여, 2031년에는 약 3,260억 달러(약 450조 원) 규모에 이를 것으로 전망됩니다. 하지만 투자가 확대될수록 운영 현장의 고민도 깊어집니다. 고가의 자원인 GPU를 중단 없이 안정적으로 가동하는 것은 물론, 도입된 장비가 낭비 없이 쓰이도록 효율성까지 챙겨야 하기 때문입니다. 이제는 단순한 모니터링을 넘어, 자원을 보다 체계적으로 관리하는 접근이 필요한 시점입니다. 이러한 복잡한 인프라 환경 속에서, 브레인즈컴퍼니의 제니우스는 정밀한 카드 단위 분석과 통합 관제 기능 등을 통해 실질적인 해결책을 제시하며 다양한 고객사에서 활용되고 있습니다. 효과적인 GPU 모니터링 및 관리를 가능하게 하는 제니우스의 3가지 핵심 강점을 자세히 살펴보겠습니다. 효과적인 GPU 모니터링 및 관리를 위한 제니우스의 3가지 강점 복잡한 GPU 관리를 성공으로 이끄는 열쇠는 '디테일'과 '통합'에 있습니다. 제니우스는 운영자가 놓치기 쉬운 사각지대를 없애고, 장애 발생 전 선제적 대응이 가능하도록 설계되었습니다. 첫 번째 강점, 서버가 아닌 '카드 단위'의 정밀 모니터링 효과적인 관리의 핵심은 장애 방지를 넘어, 고가의 자원이 낭비 없이 최적으로 활용되고 있는지를 투명하게 파악하는 데 있습니다. 하지만 일반적인 서버 모니터링 도구들은 리소스 사용량을 서버 전체의 평균값으로 뭉뚱그려 보여주는 경우가 많습니다. 이 경우, 특정 GPU에 병목이 발생해도 모르고 지나치거나, 반대로 특정 장비는 유휴(Idle) 상태로 방치되어 있음에도 전체 평균 수치에 가려져 실질적인 활용도를 판단하기 어려운 '데이터의 착시'가 발생하기 쉽습니다. 제니우스는 이러한 맹점을 해결하기 위해, 서버 단위가 아닌 장착된 GPU 카드를 개별 인덱스(Index) 단위로 독립적으로 추적하는 정밀 관제 방식을 채택했습니다. 가시성 확보: 하나의 서버에 다수의 GPU가 장착된 멀티 GPU 환경에서도 각 카드의 상태를 개별적으로 시각화합니다. 어떤 카드가 과부하 상태이며, 어떤 카드가 유휴(Idle) 상태인지 직관적으로 구분해냅니다. 자원 효율 최적화: 단순한 장비 가동 여부를 넘어, 카드별 실제 가동률 데이터를 제공합니다. 이를 기반으로 워크로드를 적절히 분배하여, 고가의 GPU 장비가 낭비되거나 특정 장비에만 부하가 집중되는 비효율을 방지할 수 있습니다. 결과적으로 관리자는 "서버가 조금 느리다"는 막연한 추측 대신, 구체적인 내용을 기반으로 즉각적이고 실질적인 조치를 취할 수 있게 됩니다. 두번째 강점, 장애 예방을 위한 심층 지표 제공 단순히 "사용량이 많다"는 정보만으로는 예고 없이 찾아오는 AI 서비스 중단을 막을 수 없습니다. 안정적인 서비스를 유지하기 위해서는 겉으로 보이는 사용률 이면에 숨겨진 하드웨어의 건강 상태를 살피는 것이 필요합니다. 제니우스는 GPU 운영에 치명적인 장애를 예방할 수 있는 상세한 심층 지표를 제공합니다. 발열 및 전력 관리: 실시간 온도 변화와 전력 소모량을 정밀 기록하여, 과열로 인한 성능 저하(Throttling)나 하드웨어의 물리적 손상을 사전에 차단합니다. OOM(Out of Memory) 예방: AI 학습 및 추론 과정에서 가장 빈번하게 발생하는 '메모리 부족 오류'를 막기 위해 메모리 점유율을 추적하고, 프로세스 충돌 징후를 미리 감지합니다. 하드웨어 상세 정보: 팬(Fan) 속도, 동작 모드(Persistence/Compute) 등 물리적인 상태까지 꼼꼼하게 체크하여 장비의 내구성을 확보합니다. 이러한 디테일한 모니터링은 운영 팀이 장애가 발생한 뒤에 대응하는 것이 아니라, 이상 징후를 미리 포착하고 선제적으로 대응할 수 있는 환경을 만들어줍니다. 세 번째 강점, 인프라 전반을 아우르는 '통합 옵저버빌리티' 아무리 GPU 관리가 중요하다고 해도, GPU는 독립적으로 존재하지 않습니다. 데이터베이스에서 데이터를 불러오고, 네트워크를 통해 전송하며, 클라우드 환경 위에서 작동하기 때문입니다. 따라서 GPU만 따로 떼어내서 관리해서는 전체 서비스 장애의 근본 원인을 찾기 어렵습니다. 제니우스는 GPU를 포함한 전체 IT 환경을 하나의 화면에서 조망하는 통합 옵저버빌리티(Observability)를 구현합니다. IT 인프라 통합 모니터링: GPU뿐만 아니라 서버, 네트워크, 애플리케이션, 데이터베이스, 쿠버네티스(Kubernetes)까지 모든 인프라 요소를 하나의 플랫폼에서 통합 관리합니다. 신속한 원인 분석: 서비스 지연이나 장애 발생 시, 그것이 GPU의 과부하 때문인지 네트워크 병목 때문인지 빠르게 파악하여 대응 시간을 단축합니다. 결국 제니우스 하나로 복잡하게 얽혀 있는 인프라 전체의 연관 관계를 파악할 수 있어, 운영 복잡도는 낮추고 관리 효율은 높일 수 있습니다. AI 에이전트 시대로 접어들며, 인프라의 안정성은 곧 서비스의 경쟁력이 되었습니다. 지금은 현재의 관리 체계가 앞으로 늘어날 트래픽과 부하를 충분히 감당할 수 있을지 냉정하게 점검해봐야 할 시점입니다. 변화하는 기술 환경 속에서도 안정적인 시스템 운영을 원하신다면, GPU부터 클라우드까지 통합 관리하는 제니우스를 통해 관리의 효율을 높여보시기 바랍니다. 제니우스 GPU 모니터링 FAQ Q1. NVIDIA 장비와 바로 호환되나요? 네. NVIDIA의 관리 표준인 NVML(NVIDIA Management Library) 기반으로 데이터를 수집하므로, 별도의 복잡한 설정 없이 즉시 모니터링이 가능합니다. Q2. 에이전트 때문에 AI 학습 속도가 느려지진 않나요? 영향 없습니다. 시스템 리소스를 최소한으로 점유하는 경량화된 수집 방식을 사용하므로, 본업인 AI 학습이나 추론 성능에 지장을 주지 않습니다. Q3. 온도나 전력 같은 물리적 상태도 보이나요? 네. 소프트웨어적인 사용량뿐만 아니라 GPU 온도, 전력 소모량, 팬(Fan) 속도 등 하드웨어 센서 데이터까지 실시간으로 수집하여 발열로 인한 장애를 미리 막을 수 있습니다. Q4. 장비가 '제 값'을 하는지(ROI) 확인할 수 있나요? 가능합니다. 단순 가동 여부가 아닌 실제 연산 활용률을 기록하며, 이를 기간별 자동 리포트로 생성해 장비의 투자 효율성을 객관적인 데이터로 증명할 수 있습니다. Q5. 클라우드나 기존 서버도 한 화면에서 볼 수 있나요? 네. GPU 장비뿐만 아니라 온프레미스 서버, 네트워크, 그리고 AWS 같은 퍼블릭 클라우드까지 하나의 통합 대시보드에서 관리할 수 있어 운영 효율이 높습니다. { "@context": "https://schema.org", "@graph": [ { "@type": "Organization", "@id": "https://www.brainz.co.kr/#organization", "name": "브레인즈컴퍼니 (Brains Company)", "url": "https://www.brainz.co.kr/", "logo": { "@type": "ImageObject", "url": "https://www.brainz.co.kr/assets/img/logo.png" }, "tickerSymbol": "KOSDAQ:099390", "sameAs": [ "https://www.facebook.com/brainzcompany.official/", "https://kr.linkedin.com/company/brainzcompany", "https://thevc.kr/brainzcompany" ], "contactPoint": { "@type": "ContactPoint", "telephone": "+82-2-2205-6023", "contactType": "customer service" } }, { "@type": "Product", "@id": "https://www.brainz.co.kr/#product", "name": "Zenius (제니우스)", "description": "AI 기반 IT 인프라 통합 모니터링 솔루션 (EMS/NMS/APM/GPU Monitoring)", "brand": { "@id": "https://www.brainz.co.kr/#organization" }, "manufacturer": { "@id": "https://www.brainz.co.kr/#organization" }, "category": "IT Infrastructure Monitoring Software" }, { "@type": "TechArticle", "@id": "https://www.brainz.co.kr/recent-story/view/id/444#article", "headline": "효과적인 GPU 모니터링 및 관리를 위한 Zenius의 3가지 핵심 강점", "url": "https://www.brainz.co.kr/recent-story/view/id/444#u", "description": "AI 시대의 필수 인프라 전략, Zenius GPU 모니터링의 3가지 강점(카드 단위 정밀 분석, 심층 하드웨어 지표, 통합 옵저버빌리티)을 상세히 소개합니다.", "image": "https://www.brainz.co.kr/assets/img/zenius_gpu_monitor_thumbnail.jpg", "author": { "@id": "https://www.brainz.co.kr/#organization" }, "publisher": { "@id": "https://www.brainz.co.kr/#organization" }, "datePublished": "2024-05-20", "inLanguage": "ko-KR", "about": { "@id": "https://www.brainz.co.kr/#product" } }, { "@type": "ItemList", "@id": "https://www.brainz.co.kr/recent-story/view/id/444#keypoints", "mainEntityOfPage": { "@id": "https://www.brainz.co.kr/recent-story/view/id/444#article" }, "name": "Zenius GPU 모니터링 핵심 기능", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "카드 단위(Index) 정밀 모니터링", "description": "서버 평균이 아닌 개별 GPU 카드 단위의 상태 추적 및 시각화로 자원 효율 최적화." }, { "@type": "ListItem", "position": 2, "name": "심층 하드웨어 지표 제공", "description": "온도, 전력, 팬 속도, OOM 등 물리적 상태 감시를 통한 장애 사전 차단." }, { "@type": "ListItem", "position": 3, "name": "통합 옵저버빌리티(Observability)", "description": "GPU, 서버, 네트워크, 쿠버네티스를 단일 콘솔에서 통합 관제하여 신속한 원인 분석 지원." } ] }, { "@type": "FAQPage", "@id": "https://www.brainz.co.kr/recent-story/view/id/444#faq", "mainEntity": [ { "@type": "Question", "name": "Zenius는 NVIDIA GPU 장비와 호환되나요?", "acceptedAnswer": { "@type": "Answer", "text": "네, Zenius는 NVIDIA의 관리 표준인 NVML(NVIDIA Management Library) 기반으로 데이터를 수집하므로 별도의 복잡한 설정 없이 즉시 모니터링이 가능합니다." } }, { "@type": "Question", "name": "모니터링 에이전트가 AI 학습 속도를 저하시키나요?", "acceptedAnswer": { "@type": "Answer", "text": "영향 없습니다. Zenius는 시스템 리소스를 최소한으로 점유하는 경량화된 수집 방식을 사용하므로, 본업인 AI 학습이나 추론 성능에 지장을 주지 않습니다." } }, { "@type": "Question", "name": "GPU 온도나 전력 같은 물리적 상태도 확인 가능한가요?", "acceptedAnswer": { "@type": "Answer", "text": "네, 가능합니다. 소프트웨어적인 사용량뿐만 아니라 GPU 온도, 전력 소모량, 팬(Fan) 속도 등 하드웨어 센서 데이터까지 실시간으로 수집하여 발열로 인한 장애를 미리 막을 수 있습니다." } } ] } ] }
2026.01.27
기술이야기
서버 모니터링을 Zenius SMS로 해야하는 4가지 이유
기술이야기
서버 모니터링을 Zenius SMS로 해야하는 4가지 이유
최근 기업의 IT 환경은 물리 서버를 넘어 가상화, 컨테이너, 그리고 하이브리드 클라우드까지 확장되며 그 복잡성이 전례 없이 높아졌습니다. 과거처럼 단순히 '서버가 켜져 있는지'만 확인하는 수준을 넘어, 이기종 인프라를 통합적으로 관제하고 장애를 사전에 차단하는 것이 운영의 핵심 과제가 되었습니다. 하지만 모니터링 도구가 파편화되어 있거나 시스템 자체가 무거워 운영에 부담을 준다면, 관리 효율은 떨어지고 운영자의 피로도는 가중될 수밖에 없습니다. 이러한 배경 속에서, 복잡한 하이브리드 환경을 단순하고 명쾌하게 관리하기 위한 서버 모니터링 툴로 Zenius SMS(Server Monitoring System)가 폭넓게 활용되고 있습니다. 많은 기관과 기업들이 서버 운영 효율화를 위한 해답으로 Zenius SMS를 선택하는지, 그 4가지 핵심 이유를 구체적으로 살펴보겠습니다. 서버 모니터링을 Zenius SMS로 해야하는 4가지 이유 [1] 이기종 인프라의 데이터 파편화 해결과 통합 가시성 확보 하이브리드 클라우드 환경에서 운영 효율을 저해하는 핵심 요인은 데이터의 '단절(Silo)'입니다. 일반적으로 클라우드 인스턴스는 CSP 전용 콘솔로, 온프레미스 서버는 기존의 레거시 SMS로, 컨테이너는 별도의 오픈소스 툴로 각각 관리되는 경우가 많습니다. 이러한 '도구의 파편화'는 서비스 장애 발생 시 각 구간의 데이터를 연결하지 못하게 만들어 신속한 원인 파악을 가로막는 주범이 됩니다. Zenius SMS는 이렇게 파편화된 모니터링 환경을 하나로 잇습니다. 개별 자산을 단순히 나열하는 것이 아니라, '통합 토폴로지 맵(Topology Map)'이라는 하나의 지도로 시각화하여 전체 흐름을 조망하게 해줍니다. - 통합 관제: 온프레미스 서버, VM, 퍼블릭 클라우드, Docker/K8s 컨테이너까지 모든 자산을 단일 대시보드(Single Pane of Glass)에 담아, 운영자가 여러 툴을 번갈아 확인해야 하는 비효율을 제거했습니다. - 직관적인 Topology Map: 단순히 IP 목록을 텍스트로 보는 것은 한계가 명확합니다. Zenius SMS는 분산된 대규모 서버 자산의 배치와 장애 현황을 직관적으로 시각화하여 전체 인프라 구조를 한눈에 파악하게 합니다. - 신속한 장애 대상 식별: 수많은 서버 중 문제가 발생한 대상을 즉시 찾아낼 수 있습니다. 텍스트 목록을 일일이 검색하는 대신, 토폴로지 맵 상에서 이상 징후가 발생한 서버를 시각적으로 바로 특정하고, 클릭 한 번으로 상세 리소스 현황을 확인할 수 있어 초동 대응 속도가 빨라집니다. 결국 Zenius SMS는 흩어진 자산을 '목록'이 아닌 '연결된 흐름'으로 보여줍니다. 전체 구조가 한눈에 들어와야, 복잡한 운영 상황을 정확하게 통제할 수 있습니다. 2. AI 기반의 동적 임계치 적용과 장애 분석 자동화 고정된 수치를 기준으로 하는 전통적인 모니터링 방식은 유동적인 하이브리드 클라우드 환경에 적합하지 않습니다. 복잡해진 트래픽 패턴을 수동으로 설정한 임계치만으로 관리하기에는 오탐과 미탐의 리스크가 큽니다. Zenius SMS는 AI 알고리즘을 모니터링에 접목하여, 운영 패러다임을 '단순 수치 감시'에서 '지능형 데이터 분석'으로 고도화했습니다. - 동적 임계치(Dynamic Threshold): 요일별/시간대별 정상 범위를 자동으로 산출합니다. 획일적인 고정 수치가 아닌, 평소 패턴(표준편차)을 벗어난 '실질적인 이상 징후'가 발생했을 때만 선별적으로 알림을 발송하여 운영 업무의 집중도를 높입니다. - 장애 스냅샷(Snapshot): 장애 발생 후 로그를 분석하는 것은 시간과 정확도 면에서 한계가 있습니다. Zenius SMS는 장애 감지 시점의 프로세스 목록, 메모리 사용률, 네트워크 상태를 자동으로 캡처 및 저장하여, 간헐적 장애에 대한 명확한 근거 데이터를 제공합니다. - 선제적 장애 예방 지원: 리소스 사용 추이를 분석하여, 자원 증설이나 최적화가 필요한 시점을 판단할 수 있는 객관적인 근거를 제공합니다. 이를 통해 운영자는 막연한 감이 아닌 통계적 데이터를 바탕으로 효율적인 인프라 확장 계획을 수립할 수 있습니다. 이처럼 Zenius SMS는 불필요한 알림을 줄이고 데이터 기반의 분석 환경을 제공하여, 운영자가 반복적인 장애 대응 업무에서 벗어나 서비스 품질 향상에 집중할 수 있도록 돕습니다. 3. 대규모 트래픽 처리를 위한 검증된 확장성 엔터프라이즈 환경에서는 관리 대상 서버가 증가하더라도 모니터링 시스템의 성능 저하 없이 안정적인 운영이 보장되어야 합니다. 비즈니스 성장에 따라 인프라가 확장될 때, 모니터링 시스템이 확장의 병목이 되어서는 안 되기 때문입니다. Zenius SMS는 대규모 환경에서 검증된 '확장성'을 통해 기업의 지속적인 인프라 확장을 지원합니다. - 대규모 동시 관제: 고성능 데이터 처리 엔진을 탑재하여 단일 매니저(Manager) 서버 한 대로 최대 1,500대의 에이전트를 동시에 수용할 수 있는 압도적인 처리 성능을 보유했습니다. - 유연한 확장성: 인프라 자산이 급격히 늘어나더라도 매니저 서버의 무한정 증설 없이 효율적인 확장이 가능하여, 구축 및 관리 비용(CAPEX/OPEX)을 절감할 수 있습니다. - 검증된 레퍼런스: 공공기관, 금융권, 대기업 등 1,500여 개 이상의 고객사 레퍼런스를 보유하고 있으며, GS인증 1등급 및 조달청 우수제품 지정을 통해 제품의 품질과 안정성을 공인받았습니다. 규모가 커질수록 안정성은 더욱 중요해집니다. Zenius SMS는 대규모 인프라 환경에서도 흔들림 없는 모니터링 성능을 보장합니다. 4. 경량 아키텍처를 통한 리소스 최적화 시스템을 감시하는 도구가 시스템의 성능을 저하시키는 일은 없어야 합니다. 하지만 널리 사용되는 Java 기반 에이전트는 JVM 구동과 가비지 컬렉션(GC) 과정에서 시스템 리소스를 과도하게 점유하여, 의도치 않게 서버 부하의 원인이 되기도 합니다. Zenius SMS는 이러한 구조적 문제를 해결하기 위해 철저한 성능 최적화 설계를 적용했습니다. - C/C++ Native Agent: 가상머신(JVM)을 거치지 않고 OS 커널 레벨에서 최적화된 C/C++ 네이티브 언어로 개발되어, 시스템 리소스 점유율을 최소화했습니다. - Overhead 최소화: CPU 및 메모리 사용량을 극도로 낮춰, 고성능이 요구되는 미션 크리티컬 시스템이나 고부하 환경에서도 서비스 성능 저하 없이 안정적인 데이터 수집이 가능합니다. - TCO(총소유비용) 절감: 리소스 사용량이 곧 비용으로 직결되는 퍼블릭 클라우드 환경에서, 경량 에이전트는 불필요한 자원 낭비를 막아 운영 비용을 최적화하는 핵심 요소가 됩니다. 결과적으로 Zenius SMS는 시스템 부하를 최소화하면서도, 정밀한 모니터링에 필요한 데이터를 안정적으로 수집합니다. 환경은 복잡해졌지만, 관리 방법까지 어려울 필요는 없습니다. Zenius SMS는 ▲통합 가시성 ▲AI 분석 ▲경량 아키텍처 ▲검증된 안정성을 기반으로, 다양한 인프라가 혼재된 환경에서도 운영의 효율을 보장합니다. 현재 사용 중인 모니터링 도구가 충분히 효율적인지 되돌아보시기 바랍니다. Zenius SMS가 복잡한 운영 환경을 개선하는 좋은 도구가 될 것입니다. [Zenius SMS FAQ] Q1. 에이전트 설치 시 서버 성능 저하(Overhead)는 없나요? A. Zenius SMS는 무거운 Java(JVM) 기반이 아닌, OS 커널 레벨에 최적화된 C/C++ Native 언어로 개발되었습니다. CPU와 메모리 점유율을 극소화하여, 미션 크리티컬한 시스템에서도 서비스 성능에 영향 없이 안정적으로 구동됩니다. Q2. 트래픽 스파이크로 인한 잦은 오탐(False Alarm)을 줄일 수 있나요? A. 네, 가능합니다. 획일적인 고정 값을 쓰지 않고, 과거 데이터를 분석해 산출한 통계 기반의 동적 임계치를 적용합니다. 평소 패턴(표준편차)을 벗어난 '실질적인 이상 징후'가 발생했을 때만 알림을 발송하여 알람 정확도를 높였습니다. Q3. 로그만으로 원인을 찾기 어려운 간헐적 장애에 대한 해결책이 있나요? A. '장애 스냅샷(Snapshot)' 기능이 해결책입니다. 장애 알람 발생 즉시 프로세스 목록, 메모리 덤프, 네트워크 상태를 자동으로 캡처하여 저장합니다. 운영자는 사고 당시의 시스템 현황을 그대로 확인하여 정확한 원인을 규명할 수 있습니다. Q4. 보안 규정이 까다로운 공공/금융권에서도 바로 도입 가능한가요? A. Zenius SMS는 GS인증 1등급 획득 및 조달청 우수제품으로 지정되어 국가 공인 품질과 보안성을 인정받았습니다. 데이터 암호화 전송 등 엄격한 보안 컴플라이언스를 충족하여, 이미 기상청을 비롯한 다수의 공공기관과 금융권에서 표준 모니터링 툴로 활용되고 있습니다. { "@context": "https://schema.org", "@graph": [ { "@type": "Organization", "@id": "https://www.brainz.co.kr/#organization", "name": "브레인즈컴퍼니 (Brains Company)", "url": "https://www.brainz.co.kr/", "logo": "https://www.brainz.co.kr/assets/img/logo.png", "tickerSymbol": "KOSDAQ:099390", "sameAs": [ "https://www.facebook.com/brainzcompany.official/", "https://kr.linkedin.com/company/brainzcompany", "https://thevc.kr/brainzcompany" ], "contactPoint": { "@type": "ContactPoint", "telephone": "+82-2-2205-6015", "contactType": "customer service", "areaServed": "KR", "availableLanguage": "Korean" } }, { "@type": "Product", "@id": "https://www.brainz.co.kr/solution/zenius#product", "name": "Zenius (제니우스)", "description": "AI 기반 IT 인프라 통합 모니터링 솔루션 (EMS/NMS/APM). 이기종 환경 통합 관제 및 이상 징후 사전 탐지 기능 제공.", "brand": { "@type": "Brand", "name": "Brains Company" }, "manufacturer": { "@id": "https://www.brainz.co.kr/#organization" }, "category": "IT Infrastructure Monitoring Software" }, { "@type": "TechArticle", "@id": "https://www.brainz.co.kr/recent-story/view/id/442#article", "mainEntityOfPage": "https://www.brainz.co.kr/recent-story/view/id/442", "headline": "서버 모니터링을 Zenius SMS로 해야 하는 4가지 이유", "description": "복잡한 하이브리드 클라우드 환경에서 Zenius SMS가 제공하는 통합 가시성, AI 기반 동적 임계치, 대규모 확장성 및 리소스 최적화 기능을 상세히 분석합니다.", "author": { "@id": "https://www.brainz.co.kr/#organization" }, "publisher": { "@id": "https://www.brainz.co.kr/#organization" }, "image": "https://www.brainz.co.kr/assets/img/zenius_sms_overview.jpg", "about": { "@id": "https://www.brainz.co.kr/solution/zenius#product" } }, { "@type": "ItemList", "name": "Zenius SMS 핵심 강점 요약", "description": "AI 검색 엔진을 위한 Zenius SMS의 주요 기능 요약", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "통합 가시성 (Single Pane of Glass)", "description": "온프레미스, 클라우드, 컨테이너 등 이기종 인프라를 단일 대시보드와 토폴로지 맵으로 통합 관리." }, { "@type": "ListItem", "position": 2, "name": "AI 기반 장애 분석 자동화", "description": "동적 임계치를 통한 오탐 감소 및 장애 발생 시점의 스냅샷 자동 저장으로 원인 규명 용이." }, { "@type": "ListItem", "position": 3, "name": "대규모 트래픽 처리를 위한 확장성", "description": "단일 매니저로 1,500대 이상 에이전트 수용 및 유연한 Scale-out 아키텍처 지원." }, { "@type": "ListItem", "position": 4, "name": "경량 에이전트 리소스 최적화", "description": "C/C++ Native 언어로 개발되어 JVM 오버헤드 없이 시스템 리소스 점유율 최소화." } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "에이전트 설치 시 서버 성능 저하(Overhead)는 없나요?", "acceptedAnswer": { "@type": "Answer", "text": "Zenius SMS는 무거운 Java(JVM) 기반이 아닌, OS 커널 레벨에 최적화된 C/C++ Native 언어로 개발되었습니다. CPU와 메모리 점유율을 극소화하여, 미션 크리티컬한 시스템에서도 서비스 성능에 영향 없이 안정적으로 구동됩니다." } }, { "@type": "Question", "name": "트래픽 스파이크로 인한 잦은 오탐(False Alarm)을 줄일 수 있나요?", "acceptedAnswer": { "@type": "Answer", "text": "네, 가능합니다. 획일적인 고정 값을 쓰지 않고, 과거 데이터를 AI가 분석해 산출한 통계 기반의 동적 임계치(Dynamic Threshold)를 적용합니다. 평소 패턴을 벗어난 '실질적인 이상 징후'에만 알림을 발송하여 정확도를 높였습니다." } }, { "@type": "Question", "name": "보안 규정이 까다로운 공공/금융권에서도 도입 가능한가요?", "acceptedAnswer": { "@type": "Answer", "text": "Zenius SMS는 GS인증 1등급 획득 및 조달청 우수제품으로 지정되어 국가 공인 품질과 보안성을 인정받았습니다. 엄격한 보안 컴플라이언스를 충족하여 기상청, 주요 금융권 등 다수의 레퍼런스를 보유하고 있습니다." } } ] } ] }
2026.01.14
회사이야기
브레인즈컴퍼니 2026 신년회 후기
회사이야기
브레인즈컴퍼니 2026 신년회 후기
브레인즈컴퍼니는 지난 8일, 2025년을 되돌아보고 다가올 2026년을 함께 준비하기 위한 '2026 신년회'를 진행했습니다. 이번 신년회는 지난 1년간의 성과와 새해 비전을 공유하는 자리이자, 우수 직원/팀 시상 및 승진자 발표, 그리고 저녁 만찬을 통해 서로의 결실을 축하하고 격려하는 화합의 시간이기도 했는데요. 서로를 향한 힘찬 응원과 진심 어린 격려가 가득했던 2026년 신년회를 자세히 돌아보겠습니다. 본부별 성과리뷰 및 계획 발표 신년회는 각 본부별 성과 리뷰 및 계획 공유로 문을 열었습니다. 첫 번째 발표자로 나선 전략사업본부장 서은숙 님은 영업과 솔루션 사업, 기술지원을 총괄하는 리더로서 지난 한 해의 여정을 되짚었습니다. 은숙 님은 “지난해 녹록지 않은 시장 환경 속에서도 목표를 초과 달성하고, 기상청, 국민연금공단을 비롯한 대형 공공 프로젝트를 성공적으로 수주하며 브레인즈컴퍼니의 독보적인 기술력과 서비스 역량을 다시 한번 입증했다”고 2025년을 평가했습니다. 또한 “제니우스 GPM과 STMS, 제니우스 AI 등 신규 모듈의 출시와 기존 제품의 고도화, 그리고 무엇보다 이 모든 과정에서 빛을 발한 부서 간의 유기적인 협업이 성과의 핵심 원동력이었다”며 구성원들에게 깊은 감사를 전했습니다. 이어진 2026년 계획에서 은숙 님은 “올해는 자회사 에이프리카와의 유기적인 협업을 통해 AI Agent 기능을 대폭 확대하고 강화할 예정”이라며, “한 발 앞선 기술 경쟁력을 바탕으로, 공공 및 금융 시장에서의 선도적 입지를 더욱 확고히 다지겠다”는 포부로 발표를 마무리했습니다. 이어서 홍보/마케팅을 담당하는 차정환 님의 발표가 진행됐습니다. 정환 님은 “지난해 ‘Tech Inside’, '제니우스 활용편'을 비롯한 깊이 있는 콘텐츠를 꾸준히 발행하며, 고객과의 접점을 넓힐 수 있었다”며 “이는 뛰어난 기술과 서비스 전문성을 갖춘 구성원들의 협업 덕분”이라고 감사의 뜻을 전했습니다. 2026년 계획과 관련해 정환 님은 “AI가 정보를 큐레이션 해주는 ‘제로 클릭’ 시대에 맞춰, AI 플랫폼에서도 우리 솔루션이 최적의 대안으로 제시될 수 있도록 콘텐츠 전략을 강화하겠다”고 밝혔습니다. 아울러 “전시회 및 PR 활동을 적극 확대하여, 브레인즈컴퍼니와 제니우스의 기술적 가치를 고객에게 더욱 명확하고 효과적으로 전달하겠다”는 계획을 전하며 발표를 마쳤습니다. 이어 기술지원팀 조영수 님의 발표가 시작됐습니다. 영수 님은 2025년을 ‘기술 지원의 질적 성장’을 이룬 해로 평가했습니다. “기상청, 건강보험심사평가원 등 대규모 프로젝트를 수행하며 단순한 유지보수를 넘어, 고객의 인프라 환경을 진단하고 최적화하는 맞춤형 기술 컨설팅에 집중했다”고 강조했습니다. 2026년 계획으로는 ‘전문성 강화와 선제적 대응’을 꼽았습니다. 영수 님은 “체계적인 기술 매뉴얼 정비와 내부 세미나 확대를 통해 전문성을 한층 더 끌어올리겠다”며, “이를 바탕으로 어떠한 환경에서도 고객이 믿고 맡길 수 있는 빈틈없는 기술 지원 서비스를 제공하겠다”는 다짐을 전했습니다. 이어서 솔루션사업팀 정지은 님의 발표가 있었습니다. 지은 님은 “지난해 ITSM 개발 역량에 정교한 데이터 시각화 기술을 더해 서비스 품질을 높였고, 국민연금공단 차세대 프로젝트를 성공적으로 완수했다”고 2025년을 평가했습니다. 특히 “고객의 니즈를 반영하여 제니우스 대시보드의 시각적 완성도와 안정성을 강화함으로써, 고객 만족도를 높였다”는 점을 강조했습니다. 2026년 계획으로는 “행정안전부 표준을 탑재한 ITSM의 신규 버전이 이미 가비아, KERIS 등 주요 레퍼런스를 확보했다”며, “신규 버전의 성공적인 런칭을 통해 시장 점유율을 적극 확대하겠다”며 발표를 마무리했습니다. 다음은 품질보증팀 장규은 님의 발표가 이어졌습니다. 규은 님은 “지난해 엄격한 품질 검증을 통해 제품 안정성을 대폭 높였고, 신규 모듈의 GS인증을 획득하며 대외적인 기술 신뢰도를 입증했다”고 2025년을 평가했습니다. 특히 대규모 공공 프로젝트 현장을 밀착 지원하며 사업의 성공적인 완수에 기여했음을 강조했습니다. 2026년 계획으로는 “공공기관 예방점검 의무화에 발맞춰 GPM 등 신규 모듈의 완벽한 품질 확보에 주력하겠다”고 밝혔습니다. 아울러 “변화하는 IT 환경에 발맞춘 선제적인 품질 검증 프로세스를 통해, 고객에게 변함없는 안정적인 서비스 환경을 보장하겠다"고 전했습니다. 다음으로 개발 1그룹 노상호 님의 발표가 있었습니다. 상호 님은 2025년을 ‘빠른 현장 지원과 기술적 외연 확장’을 동시에 이뤄낸 한 해로 평가했습니다. 특히 “지난해 많은 고객 요청 사항을 이상 없이 처리하는 동시에 제니우스 STMS, BRMS, GPM 등 시장 트렌드에 부합하는 신규 모듈을 성공적으로 런칭하는 성과를 거뒀다”고 강조했습니다. 2026년 계획으로의 중점으로는 ‘시장 수요에 앞서 가는 기술 고도화’를 꼽았습니다. “기상청 등 주요 고객사의 요구에 맞춰 스토리지 및 GPU 모니터링 기능을 고도화하고, 제니우스의 전반적인 고도화를 통해 근본적인 경쟁력을 강화하겠다”는 포부를 전하며 발표를 마쳤습니다. 이어서 개발 2그룹 김상래 님의 발표가 시작됐습니다. 상래 님은 “지난해 검색 엔진 고도화와 AI 복합 감지 기술을 적용해 데이터 분석의 정확도를 대폭 높였고, 제니우스 AI 2.0의 GS인증 획득으로 대외적인 기술력을 공인받았다”고 2025년을 평가했습니다. 2026년 계획으로는 “최신 웹 기술을 적용한 제니우스 SIEM 및 AI 3.0 개발에 주력하여 보안성과 사용자 경험(UX)을 동시에 강화하겠다”고 밝혔습니다. 또한 “시나리오 기반 탐지 등 차세대 관제 기능을 강화하여 시장 경쟁력을 한층 높이겠다”는 포부를 전했습니다. 다음으로 개발 3그룹 김자환 님의 발표가 이어졌습니다. 자환 님은 2025년을 “제니우스의 미래 경쟁력을 높이기 위해 핵심 기술 기반을 새롭게 다진 해”로 평가했습니다. 특히 "웹 아키텍처의 고도화와 주요 기능의 통합을 통해, 향후 다양한 비즈니스 요구사항에 유연하게 대응할 수 있는 확장성 높은 플랫폼 환경을 구축했다"고 강조했습니다. 2026년은 “고도화된 기술을 현장에 본격적으로 적용하는 해”가 될 예정이라며 “철저한 품질 검증을 통해 제품의 완성도를 높이고, 기존 고객들이 새로운 환경으로 매끄럽게 전환할 수 있도록 안정적인 서비스 지원에 집중하겠다”는 계획을 밝혔습니다. 이어서 개발 4그룹 홍동완 님의 발표가 있었습니다. 동완 님은 "지난해 SaaS 기반 서비스 확대를 위한 아키텍처 고도화에 집중했다"며, 특히 대규모 데이터를 효율적으로 처리할 수 있는 시스템 환경을 구축하여 성능을 높였으며, 이 과정에서 확보한 원천 기술에 대해 특허를 등록하며 차별화된 기술력을 입증했다"고 강조했습니다. 2026년은 “서비스의 유연성과 접근성을 대폭 확대하는 해”가 될 예정이라며, "정교한 모니터링 기능을 구현하고, 글로벌 클라우드 플랫폼에서의 서비스 제공을 더욱 활성화하기 위한 기술적 역량을 강화하겠다”는 계획을 밝혔습니다. 마지막으로 경영지원실 심현보 님의 발표가 있었습니다. 현보 님은 2025년을 “투명한 경영 관리와 소통 문화가 정착된 해”로 평가했습니다. 특히 철저한 리스크 관리를 통해 대외 신뢰도를 높이고, 신규 법인의 안정적인 설립을 지원하며 지속 성장의 토대를 마련했다고 강조했습니다. 2026년에는 “운영 효율화와 인재 육성에 집중할 계획"이라며, “지원 업무를 시스템화하여 효율성을 높이고, 구성원들이 업무에 몰입하며 성장할 수 있도록 업무관련 역량 교육과 복지 제도를 내실 있게 운영하겠다”는 계획을 밝혔습니다. 부사장 총평 "하나되어 더 멀리 나아갑시다" 마지막으로 심재걸 님(부사장)의 총평이 진행됐습니다. 재걸 님은 2025년을 “불확실한 시장 환경 속에서도 내실 있는 성장을 이뤄낸 해”로 평가했습니다. 재걸 님은 “지난해 기상청 프로젝트를 포함한 주요 사업을 성공적으로 완수하며 목표를 달성할 수 있었던 것은, 영업부터 개발, 품질보증, 사업관리 등 모든 부서가 ‘동업자 정신’으로 뭉쳐준 덕분”이라며 구성원들에게 깊은 감사를 전했습니다. 2026년의 핵심 경영 전략으로는 ‘제품 경쟁력 강화’와 ‘협업을 통한 시너지 극대화’를 꼽았습니다. 기술 측면에서는 '제니우스의 지속적인 고도화'를 최우선 과제로 제시하며, “기존 제니우스가 가진 강력한 성능에 AI와 클라우드 기술을 더해 제품의 완성도를 극대화해야 한다”고 강조했습니다. 또한 “클라우드 환경에 최적화된 SaaS 서비스 모델을 강화하여, 변화하는 시장 흐름에 발빠르게 대응하자"는 당부를 전했습니다. 조직 운영 측면에서는 ‘One Group, One Team’ 을 강조했습니다. 재걸 님은 “브레인즈컴퍼니의 제품력, 에이프리카의 AI/클라우드 기술, 그리고 신설된 브레인즈 랩의 컨설팅 및 SI 역량을 결합하여 토털 IT 서비스 체계를 구축해야 한다”고 메세지를 전했습니다. 이를 위해 전 구성원간의 유기적이고 긴밀한 협업을 주문했습니다. 마지막으로 ‘AI 내재화’를 통한 업무 혁신을 당부했습니다. “개발뿐만 아니라 전사적인 업무 영역에 세렝게티 AI Agent Studio 등 내부 솔루션 활용을 강화하여 생산성을 높이고, 이를 통해 축적된 경험을 다시 제품 경쟁력으로 연결하는 선순환 구조를 만들자”고 제안했습니다. 재걸 님은 “우리는 멈추지 않고 끊임없이 새로운 기회를 만들어가고 있다”며, “2026년에도 변화와 혁신을 두려워하지 말고, 하나의 팀으로 더 큰 성장을 향해 함께 나아가자”는 격려와 함께 발표를 마무리했습니다. 축하와 격려, 나눔의 시간 재걸 님의 총평에 이어, 행사의 대미를 장식하는 시상식과 승진자 발표가 진행되었습니다. 오랜 시간 브레인즈컴퍼니와 함께하며 든든한 버팀목이 되어준 장기 근속자와, 지난 한 해 남다른 열정으로 탁월한 성과를 보여준 우수 직원 및 팀에 대한 시상이 이어졌습니다. 또한, 새로운 직책을 맡아 더 큰 책임을 안고 달리게 될 승진자들의 명단이 호명될 때마다 동료들의 뜨거운 박수와 환호가 터져나왔습니다. 서로의 노고를 격려하고 수상을 축하하는 훈훈한 분위기 속에서, 전 구성원이 함께 단체 사진을 촬영하며 2026년의 힘찬 출발을 다짐하는 것으로 신년회 1부 일정은 모두 마무리되었습니다. 이어서 모든 구성원은 인근 식당으로 이동해 저녁 만찬 시간을 가졌습니다. 다소 긴장됐던 발표와 회의의 분위기를 내려놓고, 맛있는 음식과 함께 자유롭게 이야기꽃을 피웠습니다. 평소 업무 협업이 많지 않았던 타 부서 구성원들과도 어우러져 앉아, 서로의 안부를 묻고 웃음꽃을 피우며 ‘진짜 소통’을 나누는 뜻깊은 시간이었습니다. 브레인즈컴퍼니의 2026년은 이렇게 힘차게 시작되었습니다. 올 한 해, 모든 구성원이 하나 되어 서로의 성장을 응원하고, 탄탄한 팀워크를 바탕으로 그 어느 때보다 내실 있고 의미 있는 결과를 만들어갈 예정입니다.
2026.01.12
기술이야기
범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점
기술이야기
범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점
최근 디지털 행정서비스의 중요성이 날로 커짐에 따라 행정안전부는 범정부 정보시스템에 대한 예방점검 체계 도입을 의무화했습니다. 안정적인 서비스를 제공하기 위한 필수적인 조치이지만, 현장의 실무자들에게는 만만치 않은 도전이기도 합니다. 매일 약 120개에 달하는 점검 항목을 수동으로 확인하고 보고서를 작성하는 일은 업무 피로도를 높일 뿐만 아니라, 자칫 집중력 저하로 인한 점검 누락이나 데이터 오기입과 같은 인적 오류를 유발할 수 있기 때문입니다. Zenius GPM(Government Preventive Monitoring)은 이러한 현장의 어려움을 해결하고 보다 효율적인 모니터링 환경을 제공하기 위한 솔루션입니다. 행정안전부의 예방점검 매뉴얼을 충실히 시스템화하여 업무 효율성과 시스템 안정성을 동시에 잡은 Zenius GPM의 핵심 특장점 4가지를 자세히 살펴보겠습니다. 범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점 1. 행정안전부 매뉴얼을 준수하는 자동 점검 체계 구현 Zenius GPM의 가장 큰 강점은 행정안전부가 규정한 '범정부 정보시스템 예방점검 매뉴얼'을 기반으로 설계되었다는 점입니다. 기존에는 관리자가 직접 서버나 장비에 접속하여 CPU, 메모리, 디스크 상태 등을 일일이 확인하는 수동 점검이 주를 이뤘습니다. 하지만 Zenius GPM은 매뉴얼에 명시된 약 120여 개의 필수 점검 항목을 시스템 내에 내재화하여, 서버, WEB, WAS, DBMS, 네트워크 장비 등 이기종 IT 자원에 대해 Agent의 수집기능과 명령어 수행을 통해 자동 점검을 수행합니다. 이러한 자동화는 단순히 편리함만을 제공하는 것이 아닙니다. 수작업 시 발생할 수 있는 점검 누락을 원천적으로 차단하고, 데이터를 수기로 입력하는 과정에서 생길 수 있는 실수를 방지하여 데이터의 신뢰성을 크게 높여줍니다. 또한, 단순히 점검을 수행하는 것에 그치지 않고 매뉴얼에 따른 표준 운영 절차를 시스템적으로 강제함으로써, 조직 전체가 일관된 기준에 따라 시스템을 관리할 수 있는 환경을 조성합니다. 이는 결과적으로 시스템 장애를 사전에 탐지하고 예방하는 데 큰 역할을 수행합니다. 2. 직관적인 통합 모니터링 뷰(Dashboard View) 제공 수많은 장비의 상태를 실시간으로 파악해야 하는 모니터링 업무에서 시각적인 직관성은 무엇보다 중요합니다. Zenius GPM은 방대한 점검 데이터를 시각화하여 관리자가 시스템의 전반적인 건강 상태를 한눈에 파악할 수 있는 통합 모니터링 뷰를 제공합니다. 일상점검 요약 대시보드를 통해 전체 IT 자원의 점검 현황을 종합적으로 보여주며, 정상, 이상의 상태를 색상(Color-coded)으로 명확히 구분하여 관리자가 직관적으로 상황을 인지할 수 있도록 돕습니다. 텍스트 위주의 나열식 화면이 아닌, 아이콘 차트와 그래프를 활용해 점검 진행률과 결과를 가시적으로 표현하기 때문에 관리자는 어떤 영역에서 문제가 발생했는지 즉각적으로 식별할 수 있습니다. 만약 요약 화면에서 이상 징후가 발견된다면, 클릭 한 번으로 상세 점검 결과 화면으로 이동하여 구체적인 원인을 파악할 수 있는 드릴다운(Drill-down) 기능을 지원합니다. 이러한 사용자 중심의 인터페이스는 문제 발생 시 대응 시간을 단축시키고 관제 업무의 효율을 높여줍니다. 3. 운영 환경에 최적화된 유연한 설정과 확장성 모든 기관의 IT 환경이 동일할 수는 없기에, 솔루션은 다양한 운영 환경을 수용할 수 있는 유연성을 갖춰야 합니다. Zenius GPM은 정해진 시간에 자동으로 점검을 수행하는 스케줄링 기능을 기본으로 제공하며, 장애가 의심되거나 긴급한 확인이 필요할 때는 언제든 관리자가 즉시 점검을 실행할 수 있는 온디맨드(On-demand) 기능을 지원합니다. 또한 Zenius GPM은 기본 제공되는 점검 항목을 그대로 사용하는 데 그치지 않고, 각 항목에 적용되는 점검 명령어와 판단 기준을 운영 환경에 맞게 조정할 수 있도록 설계되어 있습니다. 기관별 시스템 구성이나 운영 정책에 따라 비정상 패턴이나 임계치를 항목 단위로 개별 수정하거나, 필요 시 일괄 적용할 수 있어 점검 기준을 현실적인 수준으로 유지할 수 있습니다. 이를 통해 환경 특성과 맞지 않는 과도한 알람을 줄이고, 실제 운영에 의미 있는 이상 징후를 보다 정확하게 식별할 수 있습니다. 아울러 Zenius GPM은 Zenius EMS 프레임워크 기반 위에서 NMS, SMS, APM 등 다른 모니터링 솔루션과 유기적으로 연동될 수 있도록 구성되어 있습니다. 이를 통해 예방점검 결과를 기존 관제·모니터링 체계와 자연스럽게 연결하고, 점검과 관제를 아우르는 통합 IT 운영 관리 플랫폼으로 확장할 수 있습니다. 4. 보고서 작성 자동화 및 체계적인 이력 관리 실무자들이 가장 많은 시간을 할애하면서도 번거로워하는 업무 중 하나가 바로 보고서 작성입니다. Zenius GPM은 이 부분을 획기적으로 개선했습니다. 일상점검, 특별점검, 구조진단 등 행정안전부 기준 양식에 맞는 다양한 보고서 폼을 내장하고 있어, 시스템이 수집한 데이터를 바탕으로 클릭 몇 번이면 규격에 맞는 보고서를 자동으로 생성해 줍니다. 생성된 보고서는 시스템에 이력이 남게 되어 언제든 다시 조회하거나 다운로드할 수 있으며, 필요에 따라 점검 결과 리스트를 엑셀파일로 내보내는 기능을 지원하여 2차 가공이나 별도 보고 자료 작성 시에도 유용하게 활용할 수 있습니다. 축적된 점검 데이터와 보고서는 단순한 기록을 넘어 시스템의 장기적인 성능 추이를 분석하고, 향후 인프라 증설이나 개선 계획을 수립하는 데 있어 객관적인 근거 자료로 활용될 수 있어 데이터 기반의 의사결정을 강력하게 지원합니다. Zenius GPM은 단순한 모니터링 도구를 넘어, 복잡하고 반복적인 범정부 예방점검 업무를 시스템화하여 관리자가 보다 생산적이고 핵심적인 업무에 집중할 수 있도록 돕는 든든한 운영 파트너입니다. 표준화된 점검 체계를 통해 장애를 사전에 예방하고, 자동화를 통해 업무 효율을 높이고자 하는 담당자분들에게 Zenius GPM은 가장 확실한 해답이 될 것입니다. 이미 1,500여 개의 고객사에서 검증된 기술력을 바탕으로 여러분의 IT 운영 환경을 한 단계 더 발전시켜 보시기를 권해 드립니다. { "@context": "https://schema.org", "@type": "BlogPosting", "headline": "범정부 정보시스템 예방점검체계 대응 솔루션, Zenius GPM의 4가지 장점", "description": "행정안전부의 예방점검 매뉴얼을 시스템화하여 업무 효율성과 시스템 안정성을 높이는 Zenius GPM의 핵심 기능 4가지(자동 점검, 통합 뷰, 유연한 설정, 보고서 자동화)를 소개합니다.", "image": "https://www.brainz.co.kr/og_image/blog/436", "datePublished": "2025-12-11", "author": { "@type": "Person", "name": "차정환", "jobTitle": "차장", "description": "브레인즈컴퍼니의 마케팅과 브랜딩, 홍보를 총괄하고 있습니다." }, "publisher": { "@type": "Organization", "name": "브레인즈컴퍼니", "logo": { "@type": "ImageObject", "url": "https://www.brainz.co.kr/_html/images/layout/logo.svg" } }, "mainEntityOfPage": { "@type": "WebPage", "@id": "https://www.brainz.co.kr/recent-story/view/id/436" }, "articleBody": "Zenius GPM의 4가지 장점: 1. 행정안전부 매뉴얼을 준수하는 자동 점검 체계 구현 2. 직관적인 통합 모니터링 뷰(Dashboard View) 제공 3. 운영 환경에 최적화된 유연한 설정과 확장성 4. 보고서 작성 자동화 및 체계적인 이력 관리" }
2025.12.11
기술이야기
쿠버네티스 모니터링 툴, Zenius K8s의 특장점과 활용팁 자세히 보기
기술이야기
쿠버네티스 모니터링 툴, Zenius K8s의 특장점과 활용팁 자세히 보기
쿠버네티스(Kubernetes, 이하 K8s)는 이제 많은 기업이 선택하는 운영 기반으로 자리 잡았습니다. 자동 확장과 유연한 배포 기능을 제공해 운영 효율을 높여주지만, 환경이 커질수록 구조가 복잡해지고 관리 범위도 자연스럽게 넓어집니다. 여러 클러스터와 다양한 노드, 파드, 컨테이너가 동시에 동작하는 상황에서는 어느 지점에서 성능이 떨어지고 있는지, 어떤 서비스가 영향을 받고 있는지 즉시 파악하기 어려울 때가 많습니다. 기존의 서버나 로그 중심 모니터링만으로는 전체 흐름을 한눈에 이해하기 어렵고, 문제의 시작 지점을 정확하게 찾기에도 한계가 있습니다. 결국 K8s 운영에서 가장 자주 마주치는 어려움은 복잡한 구조를 어떻게 더 명확하게 바라볼 수 있는가라는 점에 있습니다. Zenius K8s는 이러한 복잡성을 운영자에게 보다 분명하게 보여주는 통합 모니터링 솔루션입니다. 클러스터부터 파드·컨테이너·애플리케이션까지 한 화면에서 연결된 흐름으로 살필 수 있어, 성능 저하나 장애 징후를 조기에 확인하고 상황을 빠르게 정리할 수 있습니다. 그렇다면 Zenius K8s의 구체적인 특장점은 무엇이고 어떻게 활용할 수 있는지 자세히 살펴보겠습니다. 쿠버네티스(K8s) 모니터링 툴, Zenius K8s의 특장점 3가지 쿠버네티스를 운영할 때는 단편적인 지표보다 전체 구조와 각 구성 요소의 흐름이 어떻게 연결되어 움직이는지를 이해하는 것이 훨씬 중요합니다. Zenius K8s는 이 흐름을 보다 선명하게 보여주는 데 초점을 맞춘 솔루션으로, 이러한 특징을 세 가지로 정리해보면 다음과 같습니다. 1) 보는 방식이 다르다 – 전체 클러스터를 한눈에 조망하는 통합 모니터링 View Zenius K8s는 전체 클러스터를 하나의 화면에서 함께 살펴볼 수 있는 통합 뷰를 제공합니다. 물리적, 논리적 관점의 운영 상황과 각 구성 요소까지 한 화면에 표현되기 때문에, 클러스터 현황부터 Node, Pod, 컨테이너와 애플리케이션까지 종합적인 운영 상태를 확인할 수 있습니다. 특히 Zenius K8s는 Node, 컨테이너 기반의 모니터링만을 제공하는 것이 아니라 멀티 클러스터 기반 통합 모니터링을 지원하기 때문에, 다양한 K8s 환경을 여러 화면을 오갈 필요 없이 한 눈에 관리하실 수 있습니다. Zenius K8s는 이를 통해 사용자의 운영 효율과 대응 속도를 크게 향상시킵니다. 또한 통합 모니터링 View를 통해 발생한 이벤트도 바로 확인할 수 있습니다. Zenius K8s에서는 이벤트에 대한 색상 표시로 운영자들이 전체 인프라의 흐름을 한눈에 보고 문제가 생긴 부분을 즉시 찾아 대응할 수 있도록 합니다. 2) 관리 방식이 다르다 – 오브젝트 메타정보와 변경 이력을 투명하게 추적 쿠버네티스는 지속적으로 리소스를 생성하고 수정합니다. Zenius K8s는 이러한 오브젝트들의 메타정보를 주기적으로 수집하고 변경 내역을 기록합니다. 각 오브젝트의 이름, 라벨, 속성 정보를 두 시점에서 비교해 어떤 부분이 바뀌었는지 시각적으로 표시해 줍니다. 이 기능을 활용하면 운영자는 환경 설정 변경으로 인한 문제를 빠르게 파악하고 수정할 수 있습니다. 예를 들어, 특정 노드의 설정이 바뀐 뒤 성능 저하가 생겼다면 이력 화면을 통해 변경 내용을 바로 확인하고 원인을 찾아 해결할 수 있습니다. 결국 운영자는 불필요한 추측 없이 데이터를 기반으로 안정적인 운영 결정을 내릴 수 있습니다. 3) 보여주는 방식이 다르다 – 토폴로지맵 자동생성으로 구성정보 확인 Zenius K8s는 클러스터 구조를 자동으로 인식해 노드, 네임스페이스, 서비스 간 관계를 토폴로지 맵으로 시각화합니다. 별도 설정 없이도 새로 생성되거나 변경된 리소스가 자동 반영되어, 운영자는 복잡한 쿠버네티스 환경을 하나의 구조로 쉽게 파악할 수 있습니다. 이 토폴로지 맵은 서비스 간 연결과 트래픽 흐름을 시각적으로 표현해 문제가 발생한 영역을 이벤트 심각도에 따른 컬러 표출을 통해 즉시 확인할 수 있습니다. 또한 특정 노드나 서비스에서 이상 징후가 감지되면, 해당 요소를 클릭해 관련 리소스나 로그 화면으로 바로 이동할 수도 있습니다. 운영자는 이를 통해 리소스 상태뿐 아니라 노드, 파드, 컨테이너 등 서비스 간 영향 관계를 한눈에 파악하고, 장애 원인 분석과 구조 개선까지 신속히 수행할 수 있습니다. Zenius K8s는 단순한 모니터링을 넘어, ‘보는 순간 이해되는 구조적 시야’를 제공하는 토폴로지 중심 운영 환경을 만듭니다. 쿠버네티스(K8s) 모니터링 툴, Zenius K8s의 활용팁 3가지 그렇다면 이러한 장점을 갖춘 Zenius K8s를 활용해 운영 효율과 안정성을 어떻게 높일 수 있을지, 리소스 사용 편차 관리, 서비스 지연 원인 파악, 설정 변경 영향 분석과 같은 관점을 기준으로 세 가지로 나누어 알아보겠습니다. 1) 클러스터는 이렇게 본다 - 리소스 성능 모니터링 Zenius K8s는 CPU, 메모리, 디스크, 네트워크 등 주요 자원 사용 상태를 클러스터, 노드, 파드, 컨테이너 단위로 실시간 확인할 수 있습니다. 각 자원의 사용량이 얼마나 되는지, 어떤 노드가 가장 많은 리소스를 쓰는지 그래프와 지표로 보여주어 상태를 한눈에 파악할 수 있습니다. 운영자는 이를 활용해 자원 불균형 문제를 빠르게 찾고, 스케줄링 전략을 조정할 수 있습니다. 예를 들어, 특정 노드가 다른 노드보다 자원 사용률이 높게 나타난다면 파드 분배 정책을 조정해 효율적인 자원 사용이 가능해집니다. 결과적으로 불필요한 과부하를 줄이고, 전체 클러스터의 안정성을 높일 수 있습니다. 2) 병목은 이렇게 잡는다 – APM 연계로 병목 구간까지 추적 Zenius K8s는 Zenius APM과 연결되어 애플리케이션의 성능까지 함께 분석할 수 있습니다. 이러한 연계는 애플리케이션 성능 모니터링까지 가능하게 합니다. Pod 내 컨테이너 기반 애플리케이션의 트랜잭션 수, 지연상황 관찰이 가능하며, 선택한 인스턴스에 대해서는 서비스 레벨의 성능 분석도 지원합니다. 운영자는 이 기능을 통해 문제의 위치를 정확히 찾고, 서비스 품질을 빠르게 개선할 수 있습니다. 예를 들어, 결제 서비스의 응답 속도가 느려졌다면APM 연계 화면에서 어떤 구간(예: API 호출, 데이터베이스 처리 등)에서 병목이 발생했는지를 즉시 확인할 수 있습니다. 이런 방식으로 Zenius K8s는 운영자가 직접 사용자 경험의 속도를 측정하고 문제가 커지기 전에 해결할 수 있도록 돕습니다. 3) 문제 원인은 이렇게 찾는다 - 실시간 로그와 오브젝트 변경 이력 추적 Zenius K8s는 쿠버네티스 환경에서 발생하는 다양한 로그를 실시간으로 수집합니다. 컨테이너, Kubelet, API 서버, 애플리케이션 로그까지 한 화면에서 볼 수 있고, 필요한 기간이나 조건을 정해 검색할 수도 있습니다. 이 기능은 운영자가 장애가 생긴 시점을 중심으로 원인을 추적할 때 유용합니다. 예를 들어 특정 서비스가 갑자기 중단됐다면, 그 시점의 컨테이너 로그와 Kubelet 로그를 함께 조회해 원인을 바로 찾을 수 있습니다. 뿐만 아니라, 실시간 로그를 감시하며 즉시 이상을 발견할 수도 있습니다. 오브젝트(Node, Pod, Deployment, ReplicaSet 등)의 설정이 바뀐 이력도 함께 기록됩니다. 이 정보는 운영자로 하여금 “무엇이 바뀌었는가”, “언제부터 문제가 생겼는가”를 명확히 확인할 수 있도록 합니다. 운영자는 이 데이터를 근거로 설정을 되돌리거나 개선점을 빠르게 찾을 수 있습니다. 결국 이 기능은 단순한 문제 대응이 아니라, 같은 문제가 반복되지 않도록 관리하는 기반이 됩니다. 쿠버네티스 운영의 어려움은 기술이 아니라 가시성에 있습니다. Zenius K8s는 그 복잡한 구조를 단순하고 명확하게 보여줍니다. 리소스, 애플리케이션, 로그를 세밀하게 모니터링하는 기능, 그리고 통합 뷰와 변경 이력, 토폴로지 맵 같은 고급 관리 기능을 통해 운영자는 더 이상 주관적 판단에 의존하지 않고 객관적 데이터를 통해 운영에 판단을 내릴 수 있습니다. 쿠버네티스 모니터링 툴Zenius K8s는 “문제가 생기면 대응하는 도구”가 아니라, 문제를 미리 알아차리고 예방하는 운영 파트너가 되어줍니다. 복잡한 쿠버네티스 환경 속에서도 Zenius K8s와 한결 단순하고 안정적인 서비스 운영 환경을 만들어나갈 수 있습니다. Zenius K8s FAQ Q1. 기존 오픈소스로 된 쿠버네티스 모니터링 툴(Prometheus, Grafana 등)과 비교했을 때 어떤 강점이 있나요? A. Zenius K8s는 인프라부터 APM까지 단일 콘솔에서 관리하는 통합 가시성을 제공하여 여러 툴을 개별 운영하는 번거로움을 해결합니다. 특히 오픈소스만으로는 구현하기 어려운 자동 토폴로지 맵과 오브젝트 변경 이력 추적 기능을 통해 장애 원인을 즉각적으로 도출할 수 있다는 점이 가장 큰 차별점입니다. Q2. 수천 개의 파드(Pod)가 가동되는 대규모 환경에서도 안정적인 운용이 가능한가요? A. 대형 공공기관과 금융권의 대규모 관제 노하우가 집약된 Zenius K8s는 고부하 환경에서도 시스템 부하를 최소화하며 안정적인 모니터링을 수행합니다. 경량화된 수집 엔진을 탑재하여 클러스터 리소스 소모는 줄이면서도 방대한 실시간 메트릭과 로그 데이터를 누락 없이 처리합니다. Q3. 멀티 클러스터나 하이브리드 클라우드 환경에서도 통합 관제가 가능한가요? A. 온프레미스와 퍼블릭 클라우드가 혼재된 환경에서도 모든 클러스터를 단일 콘솔에서 통합 관리할 수 있는 가시성을 보장합니다. 서로 다른 환경의 클러스터들에 일관된 모니터링 정책과 대시보드를 적용할 수 있어, 인프라 규모가 커지더라도 운영 효율성과 관리 일관성을 동시에 확보할 수 있습니다. { "@context": "https://schema.org", "@graph": [ { "@type": "TechArticle", "@id": "https://www.brainz.co.kr/recent-story/view/id/431#article", "headline": "쿠버네티스 모니터링 툴, Zenius K8s의 특장점과 활용팁", "description": "클러스터부터 파드·컨테이너·애플리케이션까지 한 화면에서 관리하는 Zenius K8s의 특장점과 활용팁을 정리했습니다.", "keywords": "쿠버네티스, K8s, 쿠버네티스 모니터링, Zenius K8s", "author": { "@type": "Person", "name": "이성경", "jobTitle": "Pre-sales" }, "datePublished": "2025-11-18T00:00:00+09:00", "dateModified": "2025-12-18T12:00:00+09:00", "publisher": { "@id": "https://www.brainz.co.kr/#organization" }, "mainEntityOfPage": { "@type": "WebPage", "@id": "https://www.brainz.co.kr/recent-story/view/id/431" } }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Zenius K8s는 기존 오픈소스 K8s 모니터링과 어떤 점이 다른가요?", "acceptedAnswer": { "@type": "Answer", "text": "인프라부터 APM까지 단일 콘솔 통합 가시성을 제공하며, 자동 토폴로지 맵과 오브젝트 변경 이력 추적 기능을 통해 장애 원인을 즉각 도출할 수 있습니다." } }, { "@type": "Question", "name": "수천 개의 파드가 가동되는 대규모 환경에서도 안정적인가요?", "acceptedAnswer": { "@type": "Answer", "text": "네, 경량화된 수집 엔진을 통해 리소스 소모를 최소화하며, 대규모 공공기관 관제 노하우로 무중단 성능을 보장합니다." } }, { "@type": "Question", "name": "멀티 클러스터나 하이브리드 환경에서도 통합 관제가 가능한가요?", "acceptedAnswer": { "@type": "Answer", "text": "온프레미스와 퍼블릭 클라우드가 혼재된 환경에서도 단일 콘솔에서 모든 클러스터를 통합 관리할 수 있습니다." } } ] }, { "@type": "Organization", "@id": "https://www.brainz.co.kr/#organization", "name": "브레인즈컴퍼니 (Brainzcompany)", "url": "https://www.brainz.co.kr/", "logo": { "@type": "ImageObject", "url": "https://www.brainz.co.kr/common/img/logo.png" }, "tickerSymbol": "KOSDAQ:099390", "sameAs": [ "https://www.facebook.com/profile.php?id=61563011423544", "https://blog.naver.com/brainzsquare", "https://kr.linkedin.com/company/brainzcompany" ] } ] }
2025.11.18
기술이야기
Filebeat vs Logstash, 대규모 로그 수집 환경에서 더 적합한 선택은?!
기술이야기
Filebeat vs Logstash, 대규모 로그 수집 환경에서 더 적합한 선택은?!
대규모 시스템에서 로그는 단순한 기록이 아니라, 장애 진단과 보안 분석, 운영 자동화를 위한 핵심 데이터 소스입니다. 하지만 로그 수집량이 기하급수적으로 늘어나면 기존 Logstash 기반 아키텍처는 JVM 오버헤드와 자원 점유 문제로 병목이 발생하기 쉽습니다. 이런 한계를 보완하기 위해 주목받는 것이 Filebeat입니다. 경량 Go 기반으로 설계된 Filebeat은 CPU와 메모리 부담을 최소화하고, 수집과 전송에 집중함으로써 분산 환경에서도 안정적으로 동작할 수 있습니다. 이번 글에서는 왜 Logstash 대신 Filebeat을 선택하게 되었는지, 그리고 이를 통해 어떤 운영상의 안정성과 효율성을 확보할 수 있었는지 살펴보겠습니다. 1. 왜 Logstash 대신 Filebeat를 사용하게 되었나? 통합로그관리 시스템 개발 초창기 파일 로그 수집 에이전트로 Logstash를 사용했습니다. 그러나 고객사의 폭발적인 로그 증가와 대규모 환경 요구사항에 효과적으로 대응하고 시스템의 안정성을 위해, 로그 수집 에이전트를 Filebeat로 전환하게 되었습니다. 왜? Logstash 기반 아키텍처를 바꾸었는지, 그리고 Filebeat 도입이 가져온 기술적 이점과 주요 설정은 무엇인지 자세히 살펴보겠습니다. * 수집 에이전트 교체, 무엇이 문제였고 무엇을 얻었나? 수집해야 할 로그 소스(서버, 네트워크 장비, 보안 솔루션 등)가 폭발적으로 증가하면서, 기존의 Logstash 기반 수집 아키텍처는 다음과 같은 근본적인 한계에 직면했습니다. 안정적인 SIEM 운영을 위해서는 수집 에이전트의 경량화, 안정성, 리소스 효율성 확보가 최우선 과제였으며, 그 해답으로 Filebeat를 선택하게 되었습니다. Filebeat는 Logstash의 경량화된 버전으로, 에이전트 수집 역할을 담당합니다. 즉, 로그가 생성되는 서버에 설치되어 로그 파일을 읽고 바로 OpenSearch(이전의 Elasticsearch) 또는 Kafka와 같은 목적지로 전송하는 역할을 합니다. Filebeat는 Go 언어로 개발되어 메모리 사용량이 극히 적고, CPU 부하도 거의 발생시키지 않습니다. Filebeat로 변경은 단순히 도구를 바꾼 것이 아닌, 로그 파이프라인의 효율성과 안정성을 극대화하는 전략적 선택이었습니다. 다음으로는 Logstash에서 Filebeat로 전환함으로써 얻은 주요 장점과 기술적인 이점, 그리고 Filebeat의 주요 설정에 대해 살펴보겠습니다. 2.Filebeat 전환을 통한 구체적인 이점은?! Filebeat로의 전환은 성능 개선을 넘어, 파일 수집 아키텍처를 현대적인 분산 처리 구조로 진화시켜 안정성, 유연성, 개발 효율이라는 세 가지 핵심 이점을 확보했습니다. (How Filebeat works) [1] 데이터 흐름 제어 및 안정성 Filebeat의 가장 중요한 기능 중 하나는 백프레셔(Backpressure) 메커니즘입니다. Filebeat는 데이터를 전송하는 중앙 시스템(Kafka 또는 OpenSearch Ingest Node)에 부하가 걸려 처리 속도가 느려질 경우, 스스로 로그 전송 속도를 늦춥니다. 이 지능적인 흐름 제어 덕분에 중앙 시스템의 과부하를 막고, 데이터 파이프라인이 붕괴되는 것을 방지하여 안정적인 로그 흐름을 보장합니다. [2] 유연한 운영 환경 Filebeat는 탁월한 운영 유연성을 제공합니다. 특히 filebeat.config.inputs 기능을 활용한 동적 설정 관리는 Filebeat 재시작 없이 새로운 로그 소스를 실시간으로 추가/변경할 수 있게 해 운영의 유연성을 극대화합니다. Zenius SIEM 역시 설정 편집 기능을 제공하여 이러한 운영 유연성을 확보하고 있습니다. [3] 메타데이터 사전 분류와 ECS 정규화 fields.* 기능을 이용해 수집 단계에서 로그 유형(mtype) 등을 태깅하여 중앙 시스템의 ECS(Elastic Common Schema) 기반 정규화를 위한 '분류 키' 역할을 합니다. ECS를 통해 모든 로그가 표준화되므로, 상관관계 분석 및 일관된 검색/시각화 효율이 극대화됩니다. *여기서 ECS란?* ECS는 보안 이벤트, 로그 등 모든 데이터를 공통된 필드 이름으로 정의하는 표준 스키마입니다. 서로 다른 로그 소스(예: Apache, Windows 이벤트)에서 수집된 데이터라도 ECS를 적용하면 동일한 표준 필드(source.ip, destination.port 등)를 갖게 되어 검색과 분석이 용이해집니다. 예시) cpu_pct 라는 ECS가 있다면 “cpu > 60” 검색 시 해당 ESC가 적용된 모든 로그를 찾아 로그의 수집,출처 및 내용을보여줄 수 있음 *SIEM에서의 이점 극대화* - 일관성 확보: 모든 로그가 ECS를 기반으로 표준화되므로, 분석가들은 매번 다른 필드 이름을 외울 필요 없이 표준화된 필드로 일관성 있게 검색 및 대시보드를 구축할 수 있습니다. - 분석 효율성 확보: 모든 로그가 공통 스키마를 따르기 때문에 상관관계 분석(Correlation)을 효율적으로 수행하여 보안 위협을 신속하고 정확하게 식별하는 데 큰 도움이 됩니다. 결론적으로, Filebeat의 fields.* 기능은 단순 태깅을 넘어, 데이터를 중앙에서 ECS로 효율적이고 정확하게 정규화하기 위한 SIEM 아키텍처의 필수적인 개발 포인트입니다. 다음 내용에서는 Filebeat의 구체적인 작동 방식을 정의하는 주요 설정들을 살펴보겠습니다. 3.Filebeat 주요 설정 Filebeat를 사용하기 위해서는 filebeat.yml 파일에 주요 설정을 정의해야 합니다. 이 파일에는 어떤 로그 파일을 모니터링할지, 어떤 포맷으로 데이터를 전송할지, 그리고 어떤 목적지로 보낼지에 대한 정보가 포함됩니다. [1] Filebeat 핵심 환경 설정 (Configuration) 로그 파일 수집 자체를 제외한 Filebeat의 실행 환경, 관리 유연성, 데이터 전송 메커니즘, 그리고 운영 안정성을 정의합니다. 이러한 설정은 SIEM 아키텍처의 견고함을 결정하는 핵심 요소입니다. (설정은 환경에 따라 변경 가능하며 아래는 예시로 설정한 부분을 설명 합니다.) [2] filebeat.inputs - 로그 파일 모니터링 정의 (수집) Filebeat가 어떤 로그 파일을 읽고 수집할지 정의하며, 수집된 로그에 메타데이터를 부여하는 핵심 부분입니다. 가장 일반적인 설정은 paths를 사용하여 로그 파일의 경로를 지정하는 것입니다. 위 설정은 /var/log/secure/ 파일을 읽도록 Filebeat에 지시합니다. fields를 사용하여 로그에 메타데이터를 추가할 수 있습니다. [3] Processors - 경량 데이터 가공 로그를 목적지로 전송하기 직전에 간단한 가공을 수행하여 중앙 시스템의 부하를 줄이고 필수 메타데이터를 추가할 수 있습니다. (메타데이터 추가 예시) (Drop 설정 예시, (ex)Linux audit log 수집 시 특정 경로의 로그 제외 설정) [4] Output - 데이터 전송 목적지 정의 로그 수집 및 가공을 마친 데이터를 전송할 최종 목적지를 정의합니다. 아래 예시에서는 Kafka를 목적지로 사용하여 대규모 로그 처리 및 부하 분산의 이점을 확보합니다. Filebeat의 filebeat.yml에 있는 다양한 설정 옵션들은 로그 수집의 안정성과 효율성을 결정하는 핵심적인 요소입니다. 이러한 주요 설정 기능들을 적절히 활용한다면, 대규모 환경에서도 안정적이고 효율적인 수집 체계를 성공적으로 구축할 수 있습니다. 이제 마지막으로, Zenius SIEM에서 이러한 Filebeat 설정 기능들이 실제로 어떻게 활용되었는지 살펴보겠습니다. 4. Zenius SIEM의 Filebeat 활용 (중앙 집중식 Filebeat 관리) Zenius SIEM 솔루션은 Filebeat의 기술적 장점을 실제 운영 환경에서 활용 할 수 있도록 YML 설정 편집 및 중앙 집중식 관리 기능을 제공합니다. 이는 대규모 에이전트 환경의 운영 부담을 획기적으로 줄여주며, 고객이 Filebeat의 세밀한 기술적 기능을 직접 제어하고 커스터마이징할 수 있게 합니다. - GUI 기반 YML 편집기 및 전용 설정 기능 Zenius SIEM은 운영자가 Filebeat의 설정을 세밀하게 제어하고 편리하게 관리할 수 있도록 GUI 기반 YML 편집기를 제공합니다. 운영자는 이 환경에서 Filebeat의 모든 YML 설정 (Inputs, Processors, Output 등)을 직접 수정하고 커스터마이징 할 수 있습니다. 특히 로그 수집 안정성에 필수적인 핵심 기능, 예를 들어, 멀티라인 패턴, negate, match, tail files, 동시 수집 파일 수, include lines, exclude lines은 별도의 전용 인터페이스를 통해 더욱 편리하게 설정할 수 있도록 지원하여, 복잡한 설정도 쉽게 관리할 수 있습니다. - 중앙 집중식 설정 수백 대의 서버에 설치된 Filebeat 에이전트의 설정을 관리하고 설정과 동시에 Filebeat의 동적 설정 기능 (filebeat.config.inputs 등)을 활용하여 에이전트 재시작 없이 즉시 변경 사항을 반영한다는 것입니다. 이는 서비스 중단 없이 운영 환경을 유지할 수 있게 해줍니다. - 에이전트 제어 및 상태 모니터링 분산된 로그 수집 환경을 통합적으로 관리하기 위해, Zenius SIEM은 에이전트 제어 및 상태 모니터링 기능을 제공합니다. 각 에이전트의 실행 상태 확인, 원격 재시작, 버전 관리 등의 제어 기능을 단일 시스템에서 제공하여, 운영자가 분산된 에이전트 환경을 쉽게 관리하고 장애 발생 시 신속하게 대응할 수 있도록 돕습니다. (수집 상태 모니터링 기능) (에이전트 관리 기능) 5. 마치며 지금까지 Logstash에서 Filebeat로의 전환 배경과 그 이유, Filebeat의 주요 기능과 설정, 그리고 Zenius SIEM 환경에서의 실제 활용 사례를 중심으로 살펴보았습니다. 이번 전환은 단순한 에이전트 교체를 넘어, 대규모 환경의 요구사항에 보다 적합한 아키텍처를 구축하기 위한 전략적인 선택이었습니다. Filebeat 도입을 통해 Zenius SIEM은 다음과 같은 측면에서 운영 기반을 한층 강화할 수 있었습니다: -경량화 및 안정성 향상 Go 언어 기반의 경량 구조로 서버 자원 사용을 최소화하고, 백프레셔(Backpressure) 및 레지스트리(Registry) 기능을 통해 로그 유실 없는 안정적인 수집 환경을 구현했습니다. -운영 유연성과 분석 효율성 확보 동적 설정 관리 기능을 통해 다양한 환경에서 유연하게 운영할 수 있었으며, ECS 필드 구조(fields.*)를 적극 활용해 로그 분석과 데이터 정규화를 보다 체계적으로 수행할 수 있게 되었습니다. Zenius SIEM은 이러한 Filebeat를 중앙 집중식 관리 시스템과 통합하여, 고객 환경에 최적화된 안정적이고 효율적인 로그 수집 서비스를 제공하고 있습니다. 지금까지 Logstash에서 Filebeat로의 전환을 통해 어떤 기술적 변화가 있었고, 그것이 실제 운영 환경에 어떻게 적용되었는지를 정리해 보았습니다. 변화하는 IT 환경 속에서 로그 수집 방식 또한 지속적으로 진화하고 있으며, 앞으로도 이에 대한 다양한 시도와 고민은 계속될 것입니다.
2025.10.21
회사이야기
브레인즈컴퍼니, 제니우스(Zenius)에 특화된 AI Agent 서비스 출시
회사이야기
브레인즈컴퍼니, 제니우스(Zenius)에 특화된 AI Agent 서비스 출시
Zenius에 특화된 AI Agent 서비스가 출시되다 브레인즈컴퍼니가 통합 모니터링 솔루션 제니우스(Zenius)에 특화된 대화형 AI Agent 서비스를 새롭게 출시했습니다. 이번에 출시된 AI Agent는 운영자가 복잡한 대시보드나 메뉴를 단계별로 탐색하지 않고도, 질문을 입력하는 방식만으로 필요한 정보를 바로 확인할 수 있도록 돕는 것이 핵심입니다. 예를 들어, CPU 사용률이 가장 높은 서버, 특정 서버의 프로세스 동작 현황, 파일시스템의 사용 상태, 현재 발생 중인 이벤트 목록 등 주요 지표를 즉시 조회할 수 있어 일상 운영과 장애 대응 모두에서 효율이 높아질 것으로 기대되고 있습니다. 이번 AI Agent 서비스는 매뉴얼 등 내부 문서와 데이터베이스를 연동하여 단순 질의응답을 넘어 운영 현황을 실시간으로 직관적으로 파악할 수 있게 설계되었습니다. 운영자는 질문만으로 현황을 확인하고, 필요한 경우 관련 정보를 연속적으로 점검할 수 있어 의사결정까지의 시간이 단축시킬 수 있게 됐습니다. 해당 서비스에는 브레인즈컴퍼니 자회사인 에이프리카의 세렝게티 AI Agent Studio가 활용되었습니다. 세렝게티는 서버리스(Serverless) 기반의 AI Agent 개발·운영 플랫폼으로, 다양한 LLM 선택, 지식 데이터 연계(RAG), 외부 서비스 연계(MCP)를 지원합니다. 또한 폐쇄망 환경에서도 Private LLM을 활용할 수 있어 보안성과 확장성 측면에서도 강점을 갖추고 있습니다. 지능형 IT 인프라 통합 모니터링 솔루션 Zenius는... 제니우스는 온프레미스부터 클라우드까지 다양한 환경을 포괄하는 통합 모니터링 솔루션입니다. 서버, 네트워크, 애플리케이션, 데이터베이스, K8s 등 이기종 인프라의 구성·성능·장애 정보를 일관된 정책으로 관리하며, 예방 점검과 보안 점검 기능을 통해 운영 안정성을 뒷받침합니다. 여기에 Zenius AI 패키지를 통해 AI 기반 이상 징후 탐지를 적용해 장애를 사전에 예측·대응할 수 있습니다. 이러한 강점을 바탕으로 공공과 민간을 포함한 1,500개 이상의 고객사에서 제니우스를 활용하고 있습니다. 브레인즈컴퍼니의 전략을 총괄하는 서은숙 님은 “이번 AI Agent 서비스 출시를 통해 모니터링 분야의 운영 안정성과 대응 효율성을 한층 강화하게 됐습니다. 앞으로도 에이프리카와의 협업을 통해 AI Agent 기술의 적용 범위를 확대하고, 실시간 분석과 예측 기반 대응 역량을 더해 통합 옵저버빌리티 플랫폼으로서의 가치를 더욱 높여 나가겠습니다”라고 밝혔습니다. 앞으로도 브레인즈컴퍼니는 AI Agent를 포함한 다양한 기술을 발전시켜, 고객에게 더 효율적이고 신뢰할 수 있는 IT 운영 환경을 제공할 수 있도록 노력하겠습니다.
2025.09.29
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
기술이야기
하이브리드 클라우드와 쿠버네티스 모니터링 시 반드시 고려해야 할 4가지
많은 기업과 기관은 퍼블릭 클라우드와 프라이빗 클라우드(또는 온프레미스)를 병행하는 하이브리드 클라우드 환경을 도입하고 있으며, 그 위에서 쿠버네티스(Kubernetes, K8s)를 활용해 수십 개의 마이크로서비스를 독립적으로 배포하고 확장하는 방식을 채택하고 있습니다. 이러한 구조는 높은 유연성과 확장성을 제공하지만, 동시에 운영 복잡성을 크게 증가시키는 특징이 있습니다. 이에 따라 다양한 모니터링 도구와 대시보드가 활용되고 있지만, 실제로 장애가 발생하면 원인을 파악하기까지 여전히 많은 시간이 소요됩니다. 데이터 자체는 충분히 수집되고 있으나, 사용자 요청에서 애플리케이션과 컨테이너, 네트워크, 클라우드 리소스에 이르는 흐름이 하나의 시간축으로 유기적으로 연결되지 않기 때문입니다. 결국 각 지표가 분절된 조각으로만 보이면서, 문제의 전반적인 맥락을 명확하게 파악하기 어렵게 됩니다. 따라서 이제 모니터링의 목적은 단순한 데이터 수집을 넘어야 합니다. 수집된 데이터를 유기적으로 연결된 관점에서 해석하고, 복잡한 분산 환경의 특성을 반영하며, 탐지 이후에는 신속하게 조치와 대응으로 이어질 수 있는 체계를 마련하는 것이 중요합니다. 그렇다면 하이브리드 클라우드와 쿠버네티스 환경에서 모니터링을 수행할 때, 구체적으로 어떤 부분을 반드시 고려해야 할까요? 지금부터 그 핵심 요소들을 차례로 살펴보겠습니다. 하이브리드 클라우드와 쿠버네티스 모니터링, 반드시 고려해야 할 4가지 1) End-to-End Observability로 장애 원인을 빠르게 찾을 수 있어야 한다 모니터링은 사용자 경험에서 시작해 애플리케이션, 컨테이너와 노드, 네트워크, 그리고 클라우드 리소스까지 하나의 흐름으로 이어져야 합니다. 예를 들어 사용자가 웹 애플리케이션에서 지연을 겪는다면, 해당 요청의 트레이스를 열어 어느 구간에서 지연이 발생했는지 확인하고, 같은 시각의 CPU·메모리·입출력(IO) 사용량과 데이터베이스나 메시지 큐 같은 클라우드 매니지드 서비스의 상태를 함께 살펴야 합니다. 이렇게 해야 단순히 “느리다”라는 현상에서 멈추는 것이 아니라, “어떤 서비스의 어떤 호출이 병목이며, 어떤 인프라 자원이 영향을 주었는가”라는 구체적 결론으로 이어질 수 있습니다. 이를 위해서는 데이터가 일관된 방식으로 연결되어야 합니다. 트레이스 식별자(Trace ID)와 서비스·환경 태그 같은 공통 메타데이터가 전체 수집 계층에 적용되어야 하며, 로그·메트릭·트레이스는 이 기준을 통해 즉시 상관 분석이 가능해야 합니다. 화면 구성도 마찬가지입니다. 서비스 개요에서 시작해 트랜잭션 세부, 컨테이너와 노드 지표, 네트워크와 클라우드 리소스로 자연스럽게 이어지는 드릴다운 구조가 마련되어야 운영자가 불필요하게 여러 화면을 오가며 시간을 낭비하지 않습니다. 또한 사용자 경험 지표를 백엔드 데이터와 연결하는 과정도 필요합니다. 실제 사용자 모니터링(RUM, Real User Monitoring) 기능 등을 통해 웹 성능의 핵심 지표를 함께 확인해야 합니다. LCP(Largest Contentful Paint·핵심 내용이 화면에 표시되기까지의 시간), INP(Interaction to Next Paint·사용자 입력에 대한 반응성), CLS(Cumulative Layout Shift·레이아웃 안정성)와 같은 지표를 백엔드 트레이스와 매칭하면, 지연의 원인이 서버 처리인지, 네트워크 왕복 시간인지, 외부 리소스 때문인지 명확히 설명할 수 있습니다. 2) 쿠버네티스 주요 이벤트를 실시간 성능 데이터와 함께 볼 수 있어야 한다 쿠버네티스는 끊임없이 변화하는 동적 분산 시스템입니다. Pod는 생성과 종료를 반복하고, 오토스케일러는 순간적인 부하에 따라 리플리카 수를 조정하며, 롤링 업데이트와 롤백은 하루에도 여러 번 발생합니다. 이런 특성 때문에 단순히 CPU와 메모리 사용률 같은 정적 지표만 확인해서는 문제를 제대로 이해하기 어렵습니다. 쿠버네티스 환경에서는 반드시 이벤트와 성능 지표를 같은 시간축에서 함께 해석해야 합니다. 예를 들어 특정 시점에 오류율이 급증했다면, 원인은 단순한 리소스 부족일 수도 있습니다. 그러나 API Server 지연이나 etcd 병목, 혹은 롤링 업데이트 과정에서 트래픽 전환이 매끄럽지 않아 발생한 문제일 가능성도 있습니다. 만약 Pod 재시작이나 CrashLoopBackOff 이벤트가 성능 저하와 같은 시점에 발생했다면, 이는 추측이 아니라 근거 있는 원인 분석으로 이어질 수 있습니다. 또한 서비스 간 통신에서 병목을 찾으려면 서비스 메쉬 지표나 eBPF 기반 네트워크 관측이 효과적입니다. 이들은 동서 트래픽의 RTT, 오류율, 지연 분포를 보여주어 호출 경로상의 문제 지점을 명확히 드러냅니다. 여기에 HPA 동작이나 롤백 시점을 성능 지표와 함께 기록하면, 배포가 실제 성능 저하의 원인이었는지도 빠르게 확인할 수 있습니다. 결국 쿠버네티스 모니터링은 지표와 이벤트를 분리해 보는 것이 아니라, 하나의 시간선에서 연결해 해석해야 합니다. 그래야 단순히 “문제가 있다”라는 수준에 머무르지 않고, “이 시점, 이 이벤트, 이 서비스가 원인이다”라는 실행 가능한 결론으로 이어질 수 있습니다. 3) 클라우드 계정·리전·비용·보안을 하나의 기준으로 관리할 수 있어야 한다 하이브리드 클라우드는 유연성을 제공하지만, 동시에 운영 복잡성과 관리 부담을 크게 높입니다. 사업자마다 지표 체계와 콘솔이 다르고, 계정과 리전이 분산되면 운영자는 조각난 정보를 이어 붙이는 데 많은 시간을 소모하게 됩니다. 이러한 문제를 줄이려면 반드시 메타데이터 규칙을 정의하고 이를 일관되게 적용해야 합니다. 클라우드 계정과 리전 인벤토리는 자동으로 동기화되어야 하며, 모든 리소스에는 팀·서비스·환경 정보가 태그로 부여되어야 합니다. 비용, 성능, 가용성 지표는 이 태그를 기준으로 정렬·비교되어야 하며, 이를 통해 특정 서비스나 팀 단위의 문제를 빠르게 좁혀갈 수 있습니다. 비용 관리 또한 단순히 총액 확인을 넘어 예산·예측·이상 비용 감지까지 하나의 화면에서 제공되어야 실제 운영과 의사결정에 도움이 됩니다. 보안 역시 운영과 별도로 다루지 않고 같은 시각에서 관리해야 합니다. 퍼블릭 버킷 노출, 과도한 보안그룹 개방, 장기간 미사용 액세스 키와 같은 항목은 운영 대시보드에 함께 표시되어야 하며, 이를 통해 비용·성능·보안을 종합적으로 고려한 균형 잡힌 결정을 내릴 수 있습니다. 또한 재해복구 관점에서는 리전 간 지표 정합성과 복구 목표치(RTO, Recovery Time Objective·복구 시간 목표 / RPO, Recovery Point Objective·복구 시점 목표) 달성 여부를 주기적으로 점검해야 합니다. 이러한 데이터가 체계적으로 관리될 때 실제 장애 상황에서도 신속하게 대응할 수 있습니다. 결국 하이브리드 클라우드 모니터링은 각 사업자의 시스템을 따로따로 보는 것이 아니라, 하나의 기준과 규칙으로 통합 관리해야만 진정한 효과를 발휘합니다. 4) 운영 자동화와 알림 체계가 효과적으로 갖춰져 있어야 한다 모니터링의 목적은 데이터를 보여주는 것이 아니라 문제를 신속히 해결하는 데 있습니다. 따라서 알림 체계는 단순히 많은 경고를 쏟아내는 것이 아니라, 운영자가 즉시 판단하고 대응할 수 있을 만큼 충분한 정보를 담아야 합니다. 정적 임계치만으로는 환경 변화를 따라가기 어렵습니다. 시스템은 정상 상태를 스스로 학습해 기준선을 조정할 수 있어야 하며, 유사한 성격의 이벤트는 상관관계 분석을 통해 하나의 사건으로 묶여야 합니다. 이렇게 해야 알림 소음을 줄이고, 운영자가 진짜 중요한 신호에 집중할 수 있습니다. 알림은 단순한 메시지가 아니라 증거를 함께 제공해야 합니다. 예를 들어 “CPU 사용률 초과”라는 경고만으로는 부족합니다. 같은 시점의 로그, 트레이스 링크, 최근 배포 이력, 리소스 스냅샷 등이 함께 제시되어야 운영자가 알림에서 곧바로 확인과 조치로 이어질 수 있습니다. 전달 방식 또한 중요합니다. 메신저 알림이나 모바일 푸시처럼 실제 대응이 이루어지는 채널을 사용해야 하며, 에스컬레이션은 시간과 역할에 따라 명확히 정의되어야 합니다. 교대 근무 체계와 연동된 프로세스까지 갖춰져야 운영 공백을 최소화할 수 있습니다. 궁극적으로는 탐지 → 증거 수집 → 조치 → 복구 확인까지 이어지는 과정이 표준 절차로 자리 잡아야 합니다. 사건 종료 후에는 포스트모템이 자동 기록되어 재발 방지로 이어져야 하며, 이러한 체계가 반복될수록 평균 대응 시간(MTTA)과 평균 복구 시간(MTTR)은 꾸준히 단축됩니다. 운영 자동화와 알림 체계가 제대로 작동할 때, 모니터링은 단순한 관찰을 넘어 실질적인 운영 성과로 연결됩니다. 클라우드와 쿠버네티스 환경은 앞으로도 더 확장되고 다양해질 것입니다. 서비스는 더 많은 리전에 걸쳐 배포되고, 애플리케이션은 더 많은 마이크로서비스로 쪼개지며, 운영자는 더 많은 데이터와 알림에 둘러싸이게 될 것입니다. 이 상황에서 단편적인 모니터링만으로는 대응 속도와 품질을 보장할 수 없습니다. 지금 필요한 것은 데이터를 연결된 시각으로 읽어내고, 이벤트와 지표를 하나의 시간선에서 해석하며, 클라우드 리소스를 일관된 규칙으로 관리하고, 알림을 실제 조치로 이어주는 운영 체계입니다. 이 네 가지는 기술적으로는 별개의 영역처럼 보이지만, 실제 운영에서는 긴밀히 맞물려 작동해야만 효과가 있습니다. 결국 모니터링의 목표는 단순히 상태를 보여주는 것이 아니라, 문제 해결과 서비스 안정성을 보장하는 데 있습니다. 하이브리드 클라우드와 쿠버네티스 환경에서 이 네 가지 관점을 충실히 반영한다면, 복잡성을 줄이고, 장애 대응 시간을 단축하며, 미래의 확장성까지 확보할 수 있습니다.
2025.09.25
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
기술이야기
복잡한 네트워크 트래픽, Zenius NMS·TMS·NPM으로 정확하게 분석하기
오늘날 기업의 IT 인프라는 클라우드, 가상화, 마이크로서비스(Kubernetes)로 빠르게 전환되고 있습니다. 서비스는 점점 더 세분화되고 연결 구조는 복잡해지면서, 단일 지점에서 발생한 문제라도 전체 서비스 품질에 즉각적인 영향을 미칠 수 있습니다. 그러나 기존의 네트워크 모니터링 방식은 주로 장비 단위에 국한되어 있어, 트래픽 증가나 지연 같은 현상이 발생했을 때 원인을 신속하고 정확하게 파악하기가 쉽지 않습니다. 이러한 환경에서는 단순한 장비 레벨 모니터링을 넘어, 인터페이스 → 트래픽 흐름 → 프로세스 단위까지 네트워크를 다각도로 관찰하는 체계가 필요합니다. Zenius의 NMS, TMS, NPM은 각각의 레벨에서 데이터를 수집·분석함으로써, 네트워크 전반을 단계적으로 추적하고 문제 지점을 빠르게 규명할 수 있도록 돕습니다. 이번 글에서는 세 가지 솔루션을 연계하여 실제 운영 환경에서 어떻게 트래픽 원인을 분석할 수 있는지를 구체적으로 살펴보겠습니다. Zenius NMS·TMS·NPM: 각 솔루션의 특징과 차이점 Zenius NMS, TMS, NPM의 정의와 역할을 먼저 정리해보겠습니다. 각각의 솔루션은 모두 네트워크 트래픽을 모니터링하고 분석하는 기능을 제공하지만, 적용되는 관점과 수집 방식, 그리고 활용 목적에서 분명한 차이가 있습니다. Zenius NMS(Network Management System)는 SNMP를 기반으로 라우터, 스위치 등 네트워크 장비의 물리 인터페이스 관점에서 트래픽을 모니터링합니다. 이를 통해 장비별 포트 사용량, bps/pps, 에러 발생 여부 등을 실시간으로 확인할 수 있으며, 네트워크 전반의 기본적인 상태를 빠르게 파악하는 데 유용합니다. 반면 Zenius TMS(Traffic Management System)는 NetFlow, sFlow, IPFIX와 같은 Flow 데이터를 활용하여, 네트워크를 경유하는 IP·Port 단위 트래픽 흐름을 분석합니다. 스위치를 경유하는 트래픽에 대해 bps/pps와 같은 기본 지표를 확인할 수 있을 뿐 아니라, 애플리케이션별·서비스별·포트별로 트래픽을 분류하고 TopN 분석을 제공하기 때문에, 백본이나 라우터 구간에서 어떤 서비스가 대역폭을 가장 많이 사용하는지 직관적으로 파악할 수 있습니다. 마지막으로 Zenius NPM(Network Performance Monitoring)은 eBPF 기술을 기반으로 서버 및 컨테이너 환경의 커널 레벨 통신을 모니터링합니다. 단순 트래픽량뿐만 아니라 Latency, RTT, Jitter, Retransmit 등 정밀한 성능 지표까지 수집할 수 있어, Kubernetes나 MSA 기반 서비스처럼 복잡한 구조에서 세밀한 원인 분석이 가능합니다. 정리하자면, NMS는 장비·인터페이스 레벨, TMS는 네트워크 경로·서비스 레벨, NPM은 서버·프로세스 레벨에서 각각 네트워크를 해석합니다. 이 세 가지를 유기적으로 결합하면, 물리적 인터페이스 → 네트워크 경로 → 커널 기반 통신까지 다층적으로 추적할 수 있어, 복잡한 네트워크 환경에서 발생하는 트래픽 문제를 효과적으로 해결할 수 있습니다. 이제 각 솔루션이 실제로 어떻게 연계되어 활용되는지, 구체적인 기능 구성 및 분석 절차를 하나씩 살펴보겠습니다. NMS·TMS·NPM 기반 트래픽 분석 기능 구성 및 확인 절차 본격적으로 NMS·TMS·NPM 기반 트래픽 분석 절차를 살펴보겠습니다. 이번 사례는 쿠버네티스(K8s) 기반 WAS 서비스의 트래픽 흐름을 추적하며, 각 구간을 어떤 방식으로 점검할 수 있는지를 단계별로 살펴보겠습니다. [Step 1] 운영환경과 트래픽 흐름 구간 확인 먼저 운영환경의 기본 구성도를 확인하고 분석 대상이 되는 구간을 정리합니다. 본 사례에서는 DB POD → WAS POD → Worker Node → 내부 L3 → 백본 → 방화벽으로 이어지는 흐름을 점검 대상으로 삼습니다. 이러한 흐름을 명확히 정의해두면 이후 어떤 도구와 지표를 중점적으로 확인해야 할지 쉽게 구분할 수 있습니다. [Step 2] 구간별 모니터링 체계 구성 다음으로 각 구간을 어떤 방식으로 수용하고 분석할지 체계를 구성합니다. - 내부 L3, 백본, 방화벽은 SNMP를 통해 NMS에 연계하여 인터페이스 단위 트래픽을 수집합니다. - 백본은 NetFlow, sFlow 등의 Flow 데이터를 TMS에 수용해 애플리케이션 및 서비스 흐름을 분석합니다. - Worker Node는 Agent 기반으로 NPM에 연결해 POD 간 세밀한 통신 현황을 추적합니다. 이렇게 구성하면 서버, 네트워크 장비, 서비스 경로까지 계층별로 입체적인 모니터링이 가능합니다. [Step 3] 구간별 상세 분석 ① POD ↔ WAS POD DB POD와 WAS POD 사이의 통신은 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색] 경로를 통해 확인합니다. 여기서 IP와 Port를 기준으로 필터링하면, 해당 세션의 트래픽량뿐 아니라 Latency, RTT, Jitter, Retransmit 같은 세밀한 성능 지표를 함께 살펴볼 수 있습니다. 또한, [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색] 메뉴를 이용하면 DB POD Port를 기준으로 실제 트래픽 흐름이 어떻게 연결되는지를 시각적으로 파악할 수 있습니다. ② WAS POD ↔ Worker Node ↔ 내부 L3 그다음에는 [NPM > 모니터링 > 트래픽현황] 화면에서 Worker Node 전체 기준으로 트래픽을 점검합니다. 이 과정에서는 상위 트래픽 발생 호스트, 송수신 바이트, Latency, Jitter 추이를 시간대별로 확인할 수 있어, 특정 시점에서 발생한 지연 현상을 이벤트와 연관 지어 분석하기에 적합합니다. ③ Worker Node ↔ 내부 L3 내부 L3 구간은 [NMS > 모니터링 > 장비 > 인터페이스] 메뉴에서 확인합니다. bps, pps, 에러 발생 여부 같은 항목을 중심으로 살펴보면 링크의 안정성과 과부하 여부를 빠르게 점검할 수 있습니다. 또한, [NMS > 모니터링 > 성능 > 인터페이스] 메뉴를 활용하면 시간대별 bps/pps 그래프를 통해 트래픽 패턴 변화를 확인할 수 있으며, 이는 NPM에서 관측한 Latency나 Jitter 지표와 교차 검증하는 데 도움이 됩니다. ④ 내부 L3 ↔ 백본 ↔ 방화벽 마지막으로 백본 구간은 TMS를 통해 흐름을 분석합니다. [TMS > TopN > 어플리케이션] 메뉴에서 HTTPS, PostgreSQL 등 주요 애플리케이션별 트래픽 분포를 확인할 수 있으며, [TMS > TopN > 트래픽, Port] 화면에서는 IP와 Port를 기준으로 어떤 서비스가 대역폭을 점유하고 있는지 빠르게 파악할 수 있습니다. [ TMS > TopN > 트래픽, Port ] IP, Port 등 다양한 기준의 백본 경유 트래픽 분석 결국, NPM은 POD·서버 간 세밀한 지연과 통신 성능을, NMS는 네트워크 장비 인터페이스 단위 안정성을, TMS는 서비스 및 애플리케이션 흐름을 각각 보여줍니다. 이렇게 다층적인 분석을 통해, 단일 구간이 아닌 전체 서비스 경로를 종합적으로 추적할 수 있으며, 이는 재현이 어려운 네트워크 장애 원인 파악에 큰 도움이 됩니다. 활용 예시 “특정 Worker Node 트래픽 급증” 원인 추적하기 쿠버네티스(K8s) 환경의 서비스는 일반적으로 다수의 POD가 상호 연결되어 하나의 서비스를 제공합니다. 이러한 구조에서는 특정 Worker Node의 트래픽이 급격히 증가했을 때, 기존의 일반 모니터링 도구(SMS) 만으로는 증가 원인을 정확히 분석하기 어렵습니다. SMS는 대개 NIC 단위 트래픽 수준까지만 보여주기 때문입니다. 따라서 Zenius NPM을 활용해 OS(커널) 관점에서 IP·Port 기준의 세밀 분석을 수행해야만, 어떤 POD·세션·포트가 원인인지 구체적으로 밝혀낼 수 있습니다. 1) NPM으로 포트/세션 단서 포착 먼저 [NPM > 모니터링 > 트래픽 > View, 필터 조건 검색]에서 문제의 Worker Node를 기준으로 플로우 목록을 정렬합니다. 다수의 POD에서 동일 포트(예: 8081) 로 통신하는 패턴이 확인되면, 수집 트래픽 증가 가능성이 높습니다. → 8081은 Zenius APM 데이터 수집 포트이므로, APM 수집량 증가에 따른 네트워크 사용량 상승을 1차 가설로 설정합니다. 2) NPM 트래픽 맵으로 대상·방향 확정 다음으로 [NPM > 모니터링 > 트래픽현황 > View, 필터 조건 검색]에서 RemotePort = 8081로 필터링합니다. 트래픽 맵을 통해 어떤 POD들이 8081 수집 지점으로 트래픽을 보내는지와 연결 방향을 직관적으로 확인할 수 있습니다. 본 사례에서는 4개의 POD에서 동일 포트로 집중되는 흐름이 나타났고, 추가 8081 통신 대상은 확인되지 않았습니다. 3) K8s에서 트래픽 발생 POD 상태 교차 검증 이제 [Zenius K8s > 모니터링 > 파드]에서 트래픽 발생 POD(예: 192.168.0.216) 를 선택해 상태와 자원 사용률(CPU/메모리), 네트워크(bps) 를 확인합니다. 본 사례에서는 상태가 정상이고 Limit 대비 사용률도 안정적이어서, 트래픽 증가는 장애가 아닌 정상적인 수집 과정에서 발생한 현상으로 판단할 수 있습니다. 4) APM 지표로 맥락 검증 마지막으로 [Zenius APM > 모니터링] 대시보드에서 요청 건수, 응답 시간, 동시 사용자 등의 애플리케이션 지표를 확인합니다. NPM에서 포착된 8081 증가 시점과 APM 지표가 동조하면, 네트워크 증가는 APM 수집 트래픽 증가(정상 동작)로 판단할 수 있습니다. 반대로 APM 지표가 평온한데 8081만 치솟는다면, 이는 수집 설정이나 라우팅 구성의 이상을 의심해야 합니다. 이 경우, 동일 조건을 재현해 문제를 다시 발생시켜 보고, 원인이 확인되면 수집 주기·라우팅·리소스 할당 등을 조정(튜닝)하여 최적화할 수 있습니다. NPM–NMS–TMS–K8s–APM을 유기적으로 연결해, 특정 Worker Node 트래픽 급증 이슈를 포트/세션 단서 포착 → 흐름 확인 → POD 상태 교차 검증 → 애플리케이션 지표로 맥락 확인의 순서로 좁혀가는 방법을 살펴봤습니다. 핵심은 커널 레벨의 정밀 지표(NPM)로 원인을 가설화하고, 맵/인터페이스/서비스 흐름을 통해 이를 빠르게 검증하는 것입니다. 이 흐름을 표준 운영 절차로 적용하면, 재현이 어려운 상황에서도 원인 구간의 신속한 특정과 실질적인 조치(설정·라우팅·리소스 튜닝)도 가능합니다. 이번 글에서는 Zenius NMS·TMS·NPM을 통해 네트워크 트래픽을 다층적으로 분석하는 방법을 살펴보았습니다. 각 솔루션이 담당하는 관점과 역할은 다르지만, 함께 연계해 활용하면 장애 원인을 더 빠르고 정확하게 파악할 수 있습니다. 복잡해지는 인프라 환경에서 이런 분석 체계를 마련해 두는 것이 안정적인 서비스 운영의 핵심입니다.
2025.09.23
기술이야기
브라우저 모니터링 시스템 Zenius BRMS의 주요 기능과 특장점은?!
기술이야기
브라우저 모니터링 시스템 Zenius BRMS의 주요 기능과 특장점은?!
디지털 서비스에서 사용자가 직접 체감하는 경험은 서비스 만족도를 좌우합니다. 로그인 버튼을 눌렀는데 화면이 전환되지 않는다거나 chrome 환경에서만 동작하고 타 브라우저에서는 호환되지 않는 등의 문제는 누구나 한 번쯤 겪어봤을 것입니다. 이런 작은 불편이 반복되면 사용자는 쉽게 이탈하고, 브랜드 전체에 대한 신뢰도 역시 떨어집니다. 최종 사용자 경험을 모니터링 하지 않는 것은 최고의 스킬을 지닌 축구선수가 실내 경기장에서만 훈련받고 필드에서는 뛰어보지 않는 것과 같습니다. 그러나 PC, 모바일, 태블릿 등 사용자가 다양한 기기를 오가며 서비스를 이용하는 상황에서, 운영자가 모든 브라우저의 사용자 경험을 관찰하기는 쉽지 않습니다. 서버 로그를 수집하거나 백엔드 지표를 모니터링하는 것만으로는 사용자가 실제로 느끼는 경험을 알 수 없습니다. 결국 사용자 브라우저에서 실제로 발생하는 데이터를 기반으로, 체감 성능을 모니터링할 수 있는 체계가 필요합니다. 이에 따라서 Zenius BRMS 같은 브라우저 모니터링 시스템이 주목받고 있습니다. Zenius BRMS는 최종 사용자가 브라우저와 모바일 환경에서 겪는 여정을 그대로 추적해 보여줍니다. 페이지 로드 시간, 버튼 클릭 후 반응 속도, 오류 발생 여부까지 사용자가 겪는 체감 성능을 데이터로 전환해 운영자에게 제공합니다. 즉, Zenius BRMS는 사용자 경험의 사각지대를 제거하고, 서비스 품질을 선제적으로 관리하는 필수 솔루션입니다. 단순히 문제가 발생했을 때 대응하는 수준이 아니라, 데이터 기반으로 사용자 여정을 개선하고, 기업의 비즈니스 성과를 높이는 전략적 도구입니다. Zenius BRMS의 주요기능과 특장점을 자세히 살펴보겠습니다. 웹브라우저 모니터링 시스템, Zenius BRMS의 주요 기능 3가지 Zenius BRMS는 브라우저 환경에서 발생하는 성능 데이터와 사용자 행동 데이터를 실시간으로 수집하고 이를 자동으로 축적하여, 서비스 품질을 다각도로 분석할 수 있는 환경을 제공합니다. 운영자는 Core Web Vitals와 같은 성능 지표뿐만 아니라 세션 단위의 사용자 여정, 시간대별 성능 패턴까지 한눈에 조회할 수 있으며, 단일 항목 분석은 물론 복수 항목을 조합한 비교 분석도 수행할 수 있습니다. 이러한 기능은 실제 사용자의 경험을 정량적으로 파악하고 문제 발생 구간을 조기에 식별할 수 있도록 돕습니다. 특히 각 결과는 차트, 색상, 단위로 시각화되어 활용 효율을 높이며, 이를 기반으로 한 분석은 서비스 성능 개선, 사용자 만족도 제고, 예측 기반 운영 전략 수립 등 실질적인 성과 창출에 기여합니다. 1) 사용자 체감 성능 기반 모니터링 Zenius BRMS는 Core Web Vitals(LCP, INP, CLS)를 포함해 브라우저 성능의 핵심 지표를 자동으로 수집합니다. 세션, 페이지, 리소스, 에러 단위로 세분화된 모니터링을 제공하며, 퍼센타일 지표(P50, P75, P95)를 통해 평균값 뒤에 숨은 실제 사용자 분포까지 파악할 수 있습니다. 또한 대시보드를 통해 로드 시간, 에러율, 방문자 수 등의 체감 성능도 직관적으로 확인할 수 있습니다. 이를 통해 운영자는 서비스의 성능 저하 원인을 시스템 관점에서만 확인할 수 있는 것이 아니라 리소스별 응답시간, 지역별 성능 속도 등 사용자 관점에서까지 정량적으로 확인할 수 있습니다. 이러한 데이터는 궁극적으로 사용자 만족도를 높여 이탈률을 줄이고 서비스 신뢰성을 강화하는 데 기여합니다. 2) 사용자 행동 분석과 세션 리플레이 세션 리플레이 기능은 사용자가 실제로 클릭한 버튼, 이동한 페이지, 발생한 에러 상황을 재현하는 것을 지원합니다. 사용자의 유입부터 탐색, 이탈 경로까지의 여정을 재구성 해주어 사용자가 겪은 경험 저하 구간을 쉽게 식별할 수 있습니다. 뿐만 아니라, rage click(사용자가 짧은 시간 안에 같은 위치 반복적 클릭), dead click(사용자가 클릭했지만 아무런 동작도 일어나지 않은 클릭), error click(클릭 시 JavaScript 에러 등 오류가 발생하는 경우)과 같은 품질 저하 요인도 포착합니다. 실무자는 단순 수치 데이터가 아닌 실제 사용자 경험을 재현할 수 있어, 조기 문제 원인 파악을 할 수 있습니다. 이를 토대로 개발자, 운영자, 마케팅 담당자가 시나리오를 공유하고 협업한다면 서비스 개선 주기 단축과 전환율 제고를 기대할 수 있습니다. 3) 일별·시간대별 현황 분석 Zenius BRMS는 일별·시간대별로 성능 현황과 에러 분포를 분석해 시간 패턴 기반 인사이트를 제공합니다. 논리 연산 기반 필터링을 통해 특정 조건에 맞춘 분석도 가능하며 접속 환경별 데이터를 조합해 문제 발생 패턴을 정밀하게 탐지할 수도 있습니다. 예를 들어 이 분석 기능을 통해 매일 12시 모바일 환경에서 결제 오류가 잦은 것을 발견하고 점심시간 대에만 노출되는 팝업 스크립트를 점검할 수도 있습니다. 이처럼, 시간대별로 발생한 문제를 파악하는 것은 성능 저하의 주기적 원인을 식별하는 데 효과적입니다. 또한 서비스 배포 이후 영향도 분석에도 활용하여 QA(Quality Assurarance) 작업을 강화할 수 있습니다. 웹브라우저 모니터링 시스템, Zenius BRMS의 3가지 특장점 Zenius BRMS는 브라우저 성능 모니터링 기능만을 제공하는 것이 아니라, 운영자가 사용자들의 웹 브라우저 만족도 저하 원인을 직관적으로 파악할 수 있도록 설계된 사용자 친화 플랫폼입니다. 다음은 Zenius BRMS가 갖는 세 가지 주요 특장점입니다. 1)지능형 장애 감지와 알림 체계 운영자는 감시 항목별 심각도·임계치를 설정하고, 이벤트 발생 조건을 논리적으로 구성할 수 있습니다. 설정한 이벤트가 발생되면 단계별로 지정해둔 수신자에게 자동으로 알림이 보내집니다. 알림 방식으로 문자, 이메일, 푸시 앱, 음성 메일 등을 지원하며 기존 사용하시던 Slack, Teams 등의 툴과의 연동도 가능합니다. 운영자는 지능형 장애 감지와 알림 체계를 통해 장애 발생 사실을 실시간으로 파악하고 신속히 대응할 수 있습니다. 다단계 알림 구조는 체계적 보고 라인 구축을 통해 서비스 안정성을 제고합니다. 2)운영 관리 효율성과 보안 강화 Zenius BRMS에서는 수집된 데이터에 대해 어플리케이션/사용자 기준으로 개별 및 그룹 단위의 모니터링 권한을 설정할 수 있습니다. 운영 목적 또는 사용자 역할에 따라 권한을 설정할 수 있어 보안 관리에 용이합니다. 또한 브라우저 성능 수집 시의 세션 샘플링 비율, 리플레이 샘플링 비율 설정도 자유롭고 쉽게 변경할 수 있도록 돕기 때문에 운영 관리 효율성도 제고시킬 수 있습니다. 3)EMS 프레임워크 기반의 통합성과 확장성 Zenius BRMS는 EMS(Enterprise Management System) 프레임워크 환경에서 동작하기 때문에, 다른 관제 대상과 손쉽게 연계되어 통합 관리가 가능합니다. 이를 통해 운영자는 브라우저 성능뿐만 아니라 서버, 네트워크, 애플리케이션 등 다양한 관리 대상을 하나의 플랫폼에서 종합적으로 확인할 수 있습니다. 또한 모듈형 구조를 기반으로 해 확장이 용이하므로, 서비스 규모 확대나 신규 모니터링 항목 추가 시에도 유연하게 대응할 수 있습니다. 더불어 APM 성능 항목과 통합상황판(Overview)을 구성한다면, 웹 서비스 전반에 대한 문제 원인과 영향도를 신속히 파악할 수 있습니다. 이러한 EMS 기반 통합성과 확장성은 운영자의 관리 효율성을 높이고, 안정적인 서비스 품질 유지에 기여합니다. Zenius BRMS는 웹 서비스의 성능을 기록하는 것에 머무르지 않고, 실제 사용자가 느낀 속도와 반응을 데이터로 보여주며 행동 흐름까지 되짚어줍니다. Zenius BRMS는 모니터링 외에도 분석, 장애 감지, 알림 등 운영자를 위한 기능으로 안정적인 서비스 운영할 수 있도록 돕겠습니다. 기술 개발에만 힘쓰며 실제 사용자가 서비스를 얼마나 편리하게 사용하는지 고민하는 것을 놓치고 있었다면, 또는 다양한 디바이스나 지역에서의 성능 데이터 수집에 어려움을 가지고 있었다면, Zenius BRMS와 함께 서비스 품질의 한 끝을 달리해보는 것은 어떨까요? 빠르게 변하는 디지털 환경에서 사용자 경험을 놓치지 않으려는 운영자에게 Zenius BRMS 는 의지할 수 있는 기반이 될 것입니다.
2025.09.08
기술이야기
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
기술이야기
Zenius EMS 솔루션으로 IT 인프라를 통합 모니터링 해야하는 4가지 이유
최근 IT 인프라는 과거보다 훨씬 복잡하고 빠르게 변화하고 있습니다. 예전에는 서버, 네트워크 장비, 데이터베이스, 몇 가지 핵심 애플리케이션만 관리하면 되었지만, 이제는 VMware·Hyper-V 같은 가상화 플랫폼과 Kubernetes 기반의 컨테이너 환경이 기본이 되었고, AWS·Azure·NCP 등 퍼블릭 클라우드까지 결합되며 온프레미스와 클라우드가 혼합된 하이브리드 클라우드 환경이 일반화되었습니다. 이처럼 다양한 요소로 구성된 인프라를 개별 도구로 관리하면, 장애 발생 시 원인 파악과 해결에 많은 시간과 노력이 필요합니다. 운영자는 수많은 로그와 모니터링 화면을 오가며 원인을 추적해야 하고, 복구 역시 수작업에 의존하는 경우가 많습니다. 작은 장애 하나도 전체 서비스 가용성에 영향을 미칠 수 있는 환경에서, 통합적이고 지능적인 IT 인프라 관리 체계가 꼭 필요합니다. 브레인즈컴퍼니의 Zenius EMS는 이러한 복잡한 환경에서 안정성과 효율성을 동시에 확보할 수 있도록 설계된 통합 IT 인프라 관리 솔루션입니다. 서버, 네트워크, 데이터베이스, 애플리케이션, 가상화, 컨테이너, 클라우드를 한 화면에서 관리할 수 있으며, AI·SIEM·OAM 등 다양한 모듈을 연계하면 운영 자동화, 예측 분석, 보안, 규제 준수까지 한 번에 대응할 수 있습니다. 이제, Zenius EMS로 IT 인프라를 통합 관리해야 하는 네 가지 핵심 이유를 살펴보겠습니다. 1. 모든 IT 인프라를 아우르는 진정한 통합 모니터링 기업의 IT 환경은 온프레미스 서버, 스토리지, 네트워크 장비, 데이터베이스, 애플리케이션을 비롯해 가상화와 컨테이너, 퍼블릭 클라우드까지 다층적으로 구성됩니다. 이렇게 다양한 구성 요소가 혼재된 환경에서는 개별 도구만으로 전체 상태를 파악하기 어렵고, 장애 발생 시 원인 분석에 많은 시간이 소요됩니다. 예를 들어 웹 애플리케이션의 응답이 느려지면, 서버의 CPU·메모리, 네트워크 트래픽, 데이터베이스 세션, 컨테이너 Pod 상태를 각각 확인해야 하며, 이 과정에서 근본 원인 파악이 늦어질 수 있습니다. Zenius EMS는 이러한 복잡한 환경을 단일 플랫폼에서 완전히 통합해 관리할 수 있도록 설계되었습니다. 단순히 서버와 네트워크 상태를 나열하는 수준이 아니라, 모든 인프라 데이터를 연관 관계 기반으로 실시간 시각화합니다. 토폴로지 맵과 서비스 맵은 각 구성 요소 간의 연결 상태와 서비스 흐름을 직관적으로 보여주어, 장애나 성능 저하가 발생했을 때 어느 구간에서 문제가 시작되었는지를 빠르게 파악할 수 있습니다. 또한 다차원 대시보드와 Top N 현황을 통해 자원 사용률, 트래픽, 세션 수, 이벤트 발생 빈도 같은 핵심 지표를 종합적으로 살펴볼 수 있습니다. [ Zenius EMS 솔루션 예시화면_ 대시보드/오버뷰 구성 ] 이를 통해 운영자는 한 화면에서 전체 인프라의 상태와 성능을 동시에 확인할 수 있으며, 필요한 경우 특정 서비스나 장비까지 드릴다운하여 상세 정보를 확인할 수 있습니다. 예를 들어 웹 서비스 응답 지연이 발생하면, 대시보드에서 서버 부하, 네트워크 트래픽, DB 세션, 컨테이너 Pod 상태까지 유기적으로 연결된 데이터를 기반으로 근본 원인을 신속하게 도출할 수 있습니다. 이처럼 통합 관제 환경이 제공하는 가장 큰 장점은 운영 효율성의 향상입니다. 더 이상 여러 모니터링 도구를 전환하며 데이터를 수집하고 조합할 필요가 없고, 이벤트 발생과 분석, 원인 파악, 대응까지의 시간이 크게 단축됩니다. 2. 장애 예방과 신속한 대응 지원 Zenius EMS는 IT 인프라 운영에서 중요한 과제인 장애 예방과 신속한 대응을 위해 설계되었습니다. AI 모듈과 연계해 서버, 네트워크, 데이터베이스, 컨테이너 등에서 발생하는 성능 지표를 분석하며, CPU·메모리 사용률, 네트워크 트래픽, DB 세션 등 핵심 지표를 기반으로 병목이나 이상 징후를 사전에 감지합니다. 또한 임계치에 도달하기 전 알림을 제공해 운영자가 미리 조치를 준비할 수 있어 서비스 중단 위험을 크게 줄일 수 있습니다. [ Zenius EMS 솔루션 예시화면_ AI 연계 ] Zenius EMS는 인프라 전반에서 발생하는 이벤트를 실시간으로 수집·연계해 비정상 패턴을 탐지하며, 문제 발생 시 통합 대시보드와 서비스 맵을 통해 상태 변화를 직관적으로 확인할 수 있습니다. 장애가 실제로 발생하면 OAM(운영 자동화) 모듈과 연계해 탐지부터 복구, 정상화 확인, 결과 통보까지 전 과정을 자동화하고, 모든 조치 이력은 기록으로 남아 추후 분석과 정책 개선에 활용됩니다. 또한 SIEM 모듈과 함께 사용하면 로그 수집·저장·분석·시각화를 한 곳에서 처리해 서비스 이상 징후를 보다 정밀하게 파악할 수 있으며, 장애 재발 방지와 사후 분석에도 효과적입니다. 이렇게 Zenius EMS는 사전 예방과 신속 대응을 하나의 체계로 연결하여 운영자는 반복적인 긴급 대응에서 벗어나 전략적 운영에 집중할 수 있고, 기업은 서비스 가용성과 안정성을 높이며 운영 효율성까지 함께 확보할 수 있습니다. 3. 대규모·클라우드 환경에서도 안정적인 확장성과 성능 대규모 환경과 멀티 클라우드 아키텍처에서는 서버, 네트워크, 데이터베이스, 가상화, 컨테이너, 클라우드 리소스를 동시에 안정적으로 관리할 수 있는 능력이 필요합니다. 관리 범위가 넓어질수록 이벤트 발생량과 성능 데이터의 양은 급격히 증가하며, 이를 제때 수집하고 분석하지 못하면 장애 징후를 놓치거나 대응이 늦어질 수 있습니다. Zenius EMS는 이러한 환경을 안정적으로 운영할 수 있도록 설계되었습니다. 다양한 인프라에서 발생하는 이벤트와 성능 지표를 실시간으로 수집하고, 이를 기반으로 상태 변화를 빠르게 감지합니다. CPU·메모리·스토리지 사용률, 네트워크 트래픽, 세션 수 등 주요 지표를 통합 대시보드에서 한눈에 확인할 수 있어, 대규모 환경에서도 일관된 관제 체계를 유지할 수 있습니다. 또한 SIEM 모듈과 연계하면 대용량 로그까지 함께 수집·분석할 수 있어, 방대한 환경에서도 통합 모니터링과 실시간 관제를 강화할 수 있습니다. [ Zenius EMS 솔루션 예시화면_ K8s] Zenius EMS는 컨테이너와 멀티 클라우드 환경에도 최적화되어 있습니다. Docker와 Kubernetes 기반 환경에서는 Pod, Node, Container 단위까지 세밀하게 모니터링할 수 있으며, AWS·Azure·NCP 같은 퍼블릭 클라우드와 온프레미스를 유기적으로 연결해 하이브리드 환경 전반을 일관성 있게 관리할 수 있습니다. 이와 같은 구조를 통해 Zenius EMS는 서버 수가 많고 복잡도가 높은 환경에서도 안정적인 서비스 운영을 지원합니다. 운영자는 인프라 전반의 상태를 명확하게 파악하고, 문제 발생 시 빠르게 대응할 수 있어 서비스 가용성과 안정성을 유지할 수 있습니다. 4. 보안·컴플라이언스까지 통합 지원하는 플랫폼 Zenius EMS는 운영 효율화를 넘어 보안과 규제 준수까지 한 번에 대응할 수 있는 통합 플랫폼입니다. 서버와 네트워크 장비의 보안 취약점은 SMS·NMS·GPM 모듈과 연계해 행정안전부 권고 기준으로 자동 점검하며, 점검 결과를 기반으로 한 보안 조치 가이드도 제공합니다. 이를 통해 운영자는 복잡한 점검 업무를 간소화하고, 인프라 전반의 보안 수준을 체계적으로 유지할 수 있습니다. 접근 제어와 감사 기능 역시 강화되어 있습니다. 비인가 사용자의 접근은 IP·기간·시간 단위로 제한할 수 있으며, 금지 명령어 실행을 차단하고, 모든 세션 수행 이력을 녹화해 감사 추적이 가능합니다. 공공기관이나 금융권처럼 높은 수준의 보안이 요구되는 환경에서도 안정적으로 운영할 수 있는 이유입니다. 또한 SIEM 모듈을 통해 로그 수집·저장·분석·시각화를 일원화하고, Zenius AI 모듈과 결합하면 잠재적 보안 위협과 서비스 이상 징후를 사전에 식별할 수 있습니다. 모니터링, 보안, 규제 준수를 통합적으로 제공하는 Zenius EMS는 IT 운영 리스크를 최소화하고, 기업의 IT 거버넌스를 한 단계 높여줍니다. [ Zenius EMS 솔루션 예시화면_ DBMS ] Zenius EMS 솔루션은 국내외 약 1,500여 고객사에서 활용되고 있으며, 공공기관, 금융권, 의료기관, 대기업, 국방, 해외 사업장 등 다양한 환경에서 안정성과 확장성을 이미 검증받았습니다. 하이브리드와 멀티 클라우드가 혼재된 복잡한 인프라에서도 예측 가능한 운영과 높은 효율성, 그리고 보안 신뢰성을 확보해 서비스 품질을 안정적으로 유지할 수 있습니다. 이러한 검증된 경험과 성능을 기반으로 Zenius EMS는 운영자에게는 일관되고 편리한 관리 환경을, 기업에는 안정성과 경쟁력을 제공하며, 현재도 여러 산업 현장에서 안정적인 IT 인프라 운영을 지원하고 있습니다.
2025.08.07
기술이야기
APM 솔루션을 통한 구체적인 WAS 모니터링 가이드
기술이야기
APM 솔루션을 통한 구체적인 WAS 모니터링 가이드
WAS 환경에서 서비스를 운영하다 보면, 특정 시간대에 간헐적인 응답 지연, 트랜잭션 실패, 일시적인 서비스 불안정 등이 반복적으로 발생하는 경우가 많습니다. 문제는 이런 현상이 일정한 패턴 없이 나타날 때, 운영자가 단순한 모니터링 지표나 로그만으로는 정확한 원인을 파악하기 어렵다는 점입니다. 많은 운영자들이 CPU, TPS, 에러율 등 다양한 지표를 교차해서 살펴보지만, 실제로 "어떤 요청이 지연됐는지", "어떤 지점에서 병목이 생겼는지"를 끝내 확인하지 못하고 넘어가는 사례도 적지 않습니다. 결국 표면적인 수치만 보고 넘어갈 경우, 반복적인 문제에 대한 근본적인 해결책을 놓치게 됩니다. 이러한 운영 현실을 반영해, Zenius APM은 단순 지표 조회를 넘어 트랜잭션의 흐름을 따라가며 실제 문제를 찾아낼 수 있는 ‘주제별 분석’과 ‘Snapshot 분석’ 기능을 제공합니다. 이 두 가지 기능은 문제 발생 시점의 트랜잭션을 시각적으로 확인하고, 응답 지연의 원인을 한눈에 파악하는 데 효과적입니다. APM솔루션 Zenius APM을 통해 WAS를 효과적으로 모니터링하는 방법을 자세히 알아보겠습니다. 주제별 분석 – 문제 구간을 빠르게 좁혀가는 첫 단계 Zenius APM의 주제별 분석은 ‘APM > 분석 > 주제별 분석 > Issue’ 메뉴에서 시작됩니다. 운영자는 여기서 분석할 기간(예: 1일, 7일, 30일 등)과 대상 인스턴스(WAS 서버)를 선택할 수 있으며, 다수의 인스턴스를 동시에 지정하여 서비스 전체의 상태를 통합적으로 분석할 수도 있습니다. Zenius는 이 범위 내에서 수집된 트랜잭션 중 응답 지연, 예외 발생, 오류 응답 등 정상 범위를 벗어난 트랜잭션을 자동 탐지하고, 이슈 유형별로 정리해 보여줍니다. 이 덕분에 운영자는 로그를 일일이 검색하지 않아도, 문제 발생 구간과 주요 원인 유형을 한눈에 파악할 수 있습니다. 또한, 특정 애플리케이션이나 서버만 선택해서 보거나, 이슈 발생 시간대별로 정렬해보는 것도 가능하므로, 분석 범위를 점차 좁혀가며 원인 추적을 진행하기에 매우 유용합니다. 이 기능은 단지 이슈를 보여주는 데 그치지 않고, 다음 단계의 트랜잭션 분석이나 흐름 확인을 위한 기준점 역할을 합니다. Stack Trace 기반 흐름 분석 – 병목 지점을 구체적으로 확인 Zenius APM의 주제별 분석 화면에서 이슈 리스트를 클릭하면, 해당 트랜잭션에 대한 상세 분석 화면으로 진입할 수 있습니다. 이 화면에서는 단순히 에러가 발생했다는 사실을 넘어서, 트랜잭션의 흐름과 그 안에서 어떤 지점에서 문제가 발생했는지를 구체적으로 추적할 수 있는 정보들이 제공됩니다. 우선, 상단에서는 이슈 유형, 발생 시각, 애플리케이션 이름, 에러 메시지 등의 기본 정보가 정리되어 있어 문제가 언제, 어디에서, 어떤 유형으로 발생했는지를 빠르게 확인할 수 있습니다. 여기에 더해, Zenius는 각 트랜잭션이 어떤 호출 흐름을 거쳐 처리되었는지에 대한 Stack Trace 정보를 함께 제공합니다. 이 Stack Trace는 단순한 로그 텍스트가 아닌, 각 함수 호출 및 내부 모듈 간 처리 관계가 시각화된 형태로 제공되며, 각 단계별로 소요된 시간도 함께 확인할 수 있습니다. 이를 통해 전체 요청 중 어떤 구간에서 응답 지연이 발생했는지, DB 호출이나 외부 연동에서 병목이 있었는지를 직관적으로 파악할 수 있습니다. 특히 우측 상단에 위치한 ‘트랜잭션 상세보기’ 아이콘을 클릭하면, 해당 트랜잭션에 대한 더 구체적인 흐름 분석 화면으로 전환됩니다. 이 화면에서는 클라이언트 IP, 요청 경로, 호출 계층 구조, HTTP 상태 코드 등 네트워크 및 애플리케이션 관점의 주요 진단 정보를 모두 확인할 수 있어, 지연의 원인이 프론트엔드-백엔드-DB 중 어디에 있었는지를 명확하게 구분할 수 있습니다. 이러한 분석 방식은 단순히 응답 시간이 늘어났다는 결과만 보여주는 것이 아니라, 문제 발생의 맥락을 따라가며 원인을 추적할 수 있는 구조를 제공합니다. 기존 모니터링 도구에서는 트랜잭션의 처리 흐름을 별도로 조합해야 했다면, Zenius는 하나의 화면에서 모든 흐름을 자연스럽게 보여주기 때문에 운영자의 분석 부담을 크게 줄여줍니다. 애플리케이션 단위 흐름 파악 – 전체 상태를 한눈에 정리 트랜잭션 단위 분석만으로는 전체 시스템의 상태 흐름을 파악하는 데 한계가 있습니다. 특히 여러 서비스가 동시에 운영되는 환경에서는, 특정 애플리케이션의 호출 집중 시점, 실패율 변화, 응답 지연 구간 등을 종합적으로 분석해야 원인을 정확히 진단할 수 있습니다. Zenius APM은 이를 위해 ‘APM > 분석 > 주제별분석 > 어플리케이션’ 탭을 제공합니다. 이 화면에서는 운영 중인 각 애플리케이션에 대한 호출 수, 실패 수, 평균 응답 시간의 시계열 변화를 한눈에 확인할 수 있습니다. 뿐만 아니라, 화면 하단에서는 다음과 같은 분석 항목이 추가로 제공됩니다: - SQL 실행 패턴: 쿼리 호출량, 응답 시간, 반복 실행 여부 등 - 이슈 발생 현황: 에러 빈도, 처리 실패 패턴 - 일별/시간별 현황 차트: 특정 시간대에 집중된 요청, 급증 구간 탐지 - 응답 분포 차트: 지연 구간의 비정상 요청 탐색 이러한 시각적 분석을 통해 운영자는 “어떤 시간대에 요청이 몰렸는지”, “응답이 지연되기 시작한 시점이 언제인지”, “반복적인 병목 쿼리가 있는지” 등을 입체적으로 파악할 수 있습니다. 특히, Zenius APM은 단일 화면 내 탭 전환만으로 주요 데이터를 연계 분석할 수 있어, 운영자는 화면을 전환하거나 복잡한 조건을 따로 설정하지 않고도 전체 흐름을 집중도 있게 파악할 수 있습니다. Snapshot 분석 – 문제 발생 시점의 상태를 다시 확인하는 방법 서비스 운영 중 반복적으로 발생하는 응답 지연이나 트랜잭션 병목 문제는, 대부분 특정 시점에 집중되어 나타나는 경우가 많습니다. 하지만 문제가 실제로 발생한 그 ‘시점’의 시스템 상태를 정확히 기억하고 분석하는 것은 쉽지 않습니다. 특히 로그나 지표만으로는 당시 상황을 온전히 재현하기 어렵습니다. Zenius APM의 Snapshot 분석은 이러한 문제를 해결하기 위한 기능입니다. 이는 단순한 트랜잭션 저장이나 이력 조회를 넘어, 특정 시점의 트랜잭션 흐름, 요청량 변화, 응답 분포, 시스템 자원 사용 상태를 그대로 복원하여 보여줍니다. 운영자는 ‘APM > 분석 > Snapshot’ 분석 메뉴를 통해 분석이 필요한 시점을 선택하고, 해당 시간대에 수집된 트랜잭션 전체의 흐름을 다시 재현할 수 있습니다. 특히 응답 시간의 분포까지 시각적으로 함께 제공되기 때문에, 병목이나 실패가 시작된 구간을 한눈에 식별할 수 있습니다. 예를 들어, 매일 새벽 1시경 특정 서버에서 트랜잭션 수가 급증하면서 응답 지연이 발생하는 문제가 반복된다면, 운영자는 다음과 같은 항목을 Snapshot을 통해 명확히 분석할 수 있습니다: - 어떤 서비스 또는 애플리케이션에서 요청이 집중되었는지 - 세션 수, 응답 지연 시간, 트랜잭션 실패 건수의 변화 추이 - Stack Trace에서 어떤 호출 구간부터 처리 지연이 발생했는지 이와 더불어 Zenius는 Snapshot 데이터를 현재 실시간 대시보드와 병렬로 띄워 비교 분석할 수 있도록 지원합니다. 이를 통해 단순히 과거 상황을 재확인하는 것을 넘어, 문제 발생 전후의 시스템 차이를 입체적으로 파악하고, 재발 방지를 위한 운영 전략을 세우는 기반으로 활용할 수 있습니다. 구체적인 활용 가이드 Zenius APM은 운영 중 발생하는 애플리케이션의 속도 저하, 비정상 동작 등의 문제를 실시간으로 감지하고, 이에 대한 신속한 원인 분석을 지원합니다. 특히, 특정 시간대에 반복적으로 발생하는 이슈에 대해서는 해당 시점의 Snapshot을 재현함으로써, 문제의 흐름과 원인을 보다 정밀하게 진단할 수 있습니다. 이러한 분석은 ‘APM > 분석 > 주제별 분석 > Issue 메뉴’에서 시작됩니다. 먼저, 이슈 분석을 수행해 트랜잭션 지연, 오류, 예외와 같은 이상 패턴을 확인합니다. 이때, 조회 기준을 ‘Issue 유형’이 아닌 ‘대상 기준’으로 선택하면, 여러 인스턴스를 동시에 조회하여 각 인스턴스의 상태를 손쉽게 비교하고 분류할 수 있습니다. 이를 통해 매번 인스턴스별로 별도의 분석을 수행하지 않아도 되며, 다수의 WAS 서버나 노드가 구성된 환경에서도 통합적이고 효율적인 문제 탐색이 가능합니다. 분석 결과는 이슈 유형별로 정리되어, 문제의 집중 발생 시간대 및 영향을 받는 서비스 범위를 빠르게 파악할 수 있게 해줍니다. 분석 결과를 통해 이슈가 발생한 애플리케이션이 식별되면, ‘어플리케이션’ 탭으로 이동하여 해당 애플리케이션의 상태를 보다 심층적으로 확인할 수 있습니다. 이 탭에서는 호출량, 응답 시간, 실패 건수 등의 지표를 시간대별로 시각화해 보여주며, SQL 실행 패턴 및 응답 분포 차트까지 함께 제공되어 애플리케이션의 처리 흐름과 병목 구간을 정밀하게 파악할 수 있습니다. 어플리케이션의 호출 건수, 실패 건수, 응답 시간 등의 지표를 종합적으로 분석하면, 해당 애플리케이션의 현재 동작 상태를 명확하게 파악할 수 있습니다. 이러한 지표는 단일 트랜잭션 분석만으로는 알기 어려운, 서비스 전반의 처리 안정성이나 성능 이상 징후를 조기에 감지하는 데 유용합니다. 앞선 이슈 분석 화면에서는 이슈의 유형, 영향을 받은 애플리케이션, 연관된 트랜잭션 정보 등을 함께 확인할 수 있으며, 이를 기반으로 보다 정밀한 원인 추적이 가능합니다.특정 이슈 항목을 확인한 후에는 ‘일별/시간별 현황’ 탭으로 이동하여, 해당 문제가 어느 시간대에 집중적으로 발생했는지, 또는 지속적으로 반복되고 있는지를 시계열 기반으로 확인할 수 있습니다. 예를 들어, 위 화면에서 01시 시간대에 이슈가 가장 집중적으로 발생한 것을 확인할 수 있습니다. 이처럼 특정 시간대에 반복적으로 문제가 발생하는 양상이 보인다면, 해당 시점에 동일한 유형의 이슈가 재발될 가능성이 높다고 판단할 수 있습니다. 이에 따라 운영자는 해당 시간대의 Snapshot 분석을 실행해, 당시의 트랜잭션 흐름과 자원 사용 현황 등을 복원하고, 대상 인스턴스의 실제 상태를 보다 구체적으로 확인할 수 있습니다. Snapshot 분석을 통해 해당 시점의 접속자 수, 요청 건수, CPU·메모리 등 리소스 사용 현황을 종합적으로 확인할 수 있으며, 응답 분포 차트를 기반으로 성능 저하가 발생한 구간의 Stack Trace 정보와 관련 이슈 내역을 함께 분석할 수 있습니다. 또한 ‘새창에서 분석’ 기능을 활용하면 Snapshot 분석 결과를 별도의 창에서 확인할 수 있어, 현재의 실시간 대시보드와 병렬로 비교 분석이 가능합니다. 이를 통해 과거 특정 시점의 시스템 상태와 현재 상태를 정밀하게 대조할 수 있으며, 지속적인 성능 저하 여부나 개선 효과를 직관적으로 판단할 수 있습니다. 문제가 발생했을 때 단순히 지표를 보는 것만으로는 원인을 정확히 파악하기 어렵습니다. Zenius APM은 이슈 발생 구간을 중심으로 흐름을 따라가며, 트랜잭션 단위에서 실제 병목 지점을 시각적으로 확인할 수 있게 해줍니다. 덕분에 운영자는 반복되는 문제의 흐름을 놓치지 않고, 빠르게 대응할 수 있습니다. 운영 현장에서 ‘왜 문제가 생겼는가’를 정확히 알고 싶은 분들에게 꼭 필요한 솔루션입니다.
2025.08.01
1
2
3
4
5